TaskBot Challenge FAQs

Frequently asked questions about the challenge.
TaskBot
What is a TaskBot?
A TaskBot is a conversational agent that assists customers in completing DIY and Cooking tasks requiring multiple steps and decisions. It is the second conversational AI challenge to incorporate multimodal (voice and vision) customer experiences.
Can I choose to build any type of conversational bot?
No, you must build a TaskBot.
What will my TaskBot do?
A TaskBot helps customers complete tasks that require multiple steps and decisions in target domains such as hobbies and at-home activities such as Home Improvement and Cooking. For example, customers could ask a TaskBot to help them “bake a healthy birthday cake”. A successful TaskBot will be able to discuss different approaches to nutrition and understand individual customer’s preferences. It would then walk the customer through baking a cake step-by-step, while solving problems arising along the way, e.g., missing ingredients, and continue the conversation over multiple-days sessions.
How will I build my TaskBot?
You will use the Alexa Skills Kit (ASK) to build an Alexa skill, hosted on AWS Lambda that will create the end-to-end conversational experience for a user. Using the provided APIs, your skill will receive as input the text of the user’s utterance, and produce as output a text sentence that will be spoken to the user. You do not need to tackle ASR (automatic speech recognition) or TTS (text to speech). You will also be provided with the TaskBot Toolkit (a conversational bot toolkit), a software development kit that works with ASK and was built specifically for Alexa Prize teams to reduce the involved engineering in setting up a TaskBot and allow teams to focus on the science.


Your skill will need to determine an appropriate response at each turn of the conversation. You may use additional data sources or libraries if you wish, subject to the terms described in the Official Rules.
What is the Alexa Skills Kit (ASK)?
The Alexa Skills Kit (ASK) is a collection of free, self-service APIs, tools, documentation, and code samples that make it fast and easy for you to add skills to Alexa. Your team will use ASK to build, deploy, and test a TaskBot that is capable of conversing with millions of Alexa users.
What is TaskBot toolkit?
TaskBot, is a conversational bot toolkit in Python for natural language understanding and dialog management. The toolkit provides a set of tools, libraries and base models designed to help develop, train and deploy multimodal conversational experiences through the Alexa Skills Kit (ASK), and to provide uniform visual look for TaskBots on screened devices. The primary goal of the toolkit is to drive improved quality of conversational agents by providing a solution that is modular, extensible, and scalable, and provide abstractions for infrastructure and low-level tasks.
Competition details
How will winners be selected?
Through various phases of the competition, TaskBots will be evaluated based on feedback from Alexa users and assessment by Amazon.


Midway through the competition, all TaskBots that have been certified and published will be evaluated by Alexa users and Amazon. As defined in the Official Rules, TaskBots that meet the required criteria will advance to later phases of the competition and eventually the semifinals.



During the semifinals round, Alexa users will evaluate the semifinalist TaskBots. Two TaskBots selected by Alexa users and up to three TaskBots selected by the Amazon panel will advance to the finals. During the finals in September 2023, the finalist teams will compete head-to-head in front of judges. The judges will score the TaskBots on their ability to successfully complete the task requested.
Will this competition be judged like a Turing Test?
No. The goal of the Alexa Prize is to create TaskBots that fluently and effectively assist the user, not to make them indistinguishable from a human when compared side-by-side. While the TaskBots built for the Alexa Prize will be human-like in some respects, they will be very different in others, and could easily reveal themselves in a Turing Test. For example, TaskBots may have ready access to much more information than a human. Asking the TaskBots to act like a human could diminish the customer experience and hinder the efforts of the participants to build the best TaskBot to further conversational AI.
When and where is the finals event?
The finals event will be held in September 2023 at a location to be determined, with the results will be announced in September 2023.
Can we use other funding to help us participate in this challenge?
Yes, you may use other funding to support your team, subject to the terms described in the Official Rules. External funding must be disclosed to Amazon.
Can we use technology other than AWS to host our TaskBot?
Your team may build its TaskBot in any framework of your choosing, but the TaskBot must be hosted on AWS to leverage Alexa’s TaskBot toolkit.
Will Alexa customers be able to engage with our TaskBot?
Your team will be required to submit its TaskBot for certification and publication by the Amazon Alexa team. After certification, you will enter the Internal Amazon Beta Period, where Amazon employees will test your TaskBot and provide feedback. After the Internal Amazon Beta Period, we will allow Alexa users to try your TaskBot and provide feedback to you. Amazon may impose requirements that the TaskBots must meet before they will be made available to Alexa users. Such requirements, specified in the Official Rules, may include, among other things, a minimum average customer rating, uptime requirements, or the ability to consistently filter offensive content.
Which Alexa users will be able to interact with the TaskBots, and what languages must they support?
TaskBots will be made available to Alexa users in the United States or who select the United States as their preferred marketplace. Your team must build its TaskBot using U.S. English.
Will we publish our research from the Alexa Prize?
Yes. Publishing research papers as an outcome of your work on Alexa Prize is required for all teams participating in the competition, although teams may not publish Amazon confidential information, as described in the Official Rules. The Alexa Prize requires all teams to submit a technical paper for the Alexa Prize proceedings. Your TaskBot will not be selected for the finals if your team does not submit a technical paper for Alexa Prize proceedings. Papers will be published online at the end of the competition and made publicly available.


Teams may also publish research papers in third-party publications and conferences, as long as all papers are provided to Amazon for review at least two weeks before the submission deadlines and no research papers are published before the Alexa Prize proceedings are published, unless Amazon approves otherwise in writing.
Who will own the intellectual property rights in my submission?
You will retain ownership over your TaskBot. Amazon will have a non-exclusive license to any technology or software you develop in connection with the competition. See the Official Rules for details.
Eligibility
Who can apply to participate?
The Alexa Prize is open to full-time students enrolled in an accredited university, with the exception of universities in Cuba, Iran, Syria, North Korea, Sudan, the region of Crimea, and where prohibited by law (see Official Rules). Proof of enrollment will be required to participate.
Can I participate if I don’t attend a university?
No. The Alexa Prize is open only to full-time enrolled university students.
Do I need to be enrolled in a university program throughout my participation in the competition?
All participating team members must remain full-time students in good standing at their university while participating in the competition.
Do I need to be a certain age?
Participants must be at or above the age of majority in the country, state, province or jurisdiction of residence at the time of entry.
Can I enroll if a family member is an Amazon employee?
Immediate family members and household members of Amazon employees, directors, and contractors are not eligible to participate. See Official Rules for additional restrictions.
Teams
How many teams will be selected to participate?
All applications will be reviewed and evaluated by Amazon. Up to ten teams will be selected and sponsored by Amazon. All teams will receive a $250,000 grant intended to support two full-time students and a month of faculty time, free Alexa devices, and free AWS hosting including access to CPU and GPU based machines, SQL and NoSQL databases, and object storage. See the Official Rules for details.
How many team members can our team have?
There is no minimum or maximum number of team members. All team members must be enrolled in their university throughout their participation. All teams will receive a $250,000 grant regardless of how many members are on the team. We recommend a team with 4-6 students with diverse fields of study or areas of expertise.
Can students from different universities be on the same team?
No. Teams must be comprised of students attending the same university.
Can one university have more than one team?
Yes, universities may have more than one team. Multiple teams cannot have the same faculty advisor.
Can I participate on two separate teams?
No. You can only be a part of one team for the duration of the competition.
Can undergraduate and graduate students work together?
Yes, teams may be comprised of undergraduate and graduate students.
Do I need a faculty advisor?
All teams must nominate a faculty advisor and include the faculty advisor’s consent in the applications.
What is the role of the faculty advisor?
Faculty advisors will advise students on technical directions and be a sounding board for new ideas, similar to a graduate school advisor. They will also act as the official representative from the university for this competition.
Can we add or remove team members during the competition?
During the competition, there will be a period of time during which faculty advisors may request to remove or add members to the team, subject to approval by Amazon. See the Official Rules for details.
Can we discuss our TaskBot with faculty or students who aren’t on our team?
Only team members may work on their TaskBots. However, the faculty advisor and other students and faculty members at your university may provide support and advice to your team and may co-author technical publications and research papers.
Application process
How do we apply?
Please fill in the Taskbot Challenge 2 application hosted on YouNoodle.
What do we need to apply?
Once you have selected your team members, team leader, and faculty sponsor, you are ready to begin the application process.
Do all team members have to apply?
Each team must have a team lead, who should submit only one application on behalf of the whole team. Your application must include all of your team members’ information.
Is there an application fee?
There is no application fee.
How will teams be selected to participate?
All applications will be reviewed by Amazon. Teams will be selected by Amazon based on the following criteria: (1) the potential scientific contribution to the field; (2) the technical merit of the approach; (3) the novelty of the idea; and (4) an assessment of the team’s ability to execute against their plan. Please be sure to provide enough detail in your application to enable evaluation of your proposal.
Prizes
What are the prizes for winning the competition?
A prize of $500,000 will be awarded to team that creates the best TaskBot. The second-place and third-place finalist teams will receive a $100,000 and a $50,000 prize, respectively. See the Official Rules for details.
Do we get a stipend and devices to participate in the Alexa Prize?
Up to ten teams will be sponsored to participate in the competition. Each sponsored team’s university will receive a $250,000 research grant to help fund the team’s participation.


The sponsorship includes Alexa-enabled devices, free AWS services to support the development of the team’s TaskBot, and support from the Alexa team.
How can the grant be spent?
The grants are intended to support two full-time students for the duration of the Competition and one month of the Faculty Advisor’s salary. No more than 35% of the research grant may be allocated to administrative fees. If your team would like to use the funds in another manner, your faculty advisor must receive approval from Amazon before doing so.
What happens if we are selected and receive a stipend but can no longer participate?
Stipends will be awarded in installments payable to the university. If your team withdraws before any of the installments, remaining funds will not be transferred to the university.
How will the prizes be distributed among a team?
The first, second, and third place prizes will be distributed equally among all registered team members.
Timeline
What are the key milestones of the competition?
Teams must submit their applications by early November, 2022. Teams selected to participate in the competition will be notified by early January, 2023. The competition will run from about January 2023 through September 2023. See the Official Rules for details.
More information
See the Official Rules or submit your questions. Need assistance? Email: alexaprizesupport@amazon.com

Latest news

The latest updates, stories, and more about Alexa Prize.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.