Alexa Prize faculty advisors provide insights on the competition

Teams' research papers that outline their approaches to development and deployment are now available.

Earlier today, the Alquist team from Czech Technical University learned it had been awarded the $500,000 first-prize purse in the Alexa Prize SocialBot Grand Challenge 4. Teams from Stanford and the University of Buffalo placed second and third, respectively.

Each Alexa Prize challenge team has a faculty advisor. Below are some perspectives on the competition from the advisors to each of the finalists in the recently completed challenge.

Jan Sedivy, Czech Technical University

The CTU team was excited to be part of the Alexa Prize competition. It is very beneficial for the academic team to have a challenging project with many cooperating students. Creating a socialbot is an excellent target requiring innovative and concentrated thinking, but we also had much fun designing catchy and attractive dialogs. Thank you, Amazon, for organizing the competition, and we are looking forward to joining again.

Christopher Manning, Stanford University

We had a great group of students for the Chirpy Cardinal team’s second attempt at the Alexa Prize. I was impressed by the work they took on to almost entirely remake our codebase and to add major new features using neural network generation to more seamlessly blend in information from news articles or Wikipedia, and to improve the experience when discussing food and sports. Producing a human-like conversation is surprisingly subtle and tricky: You need to be able to maintain a natural and consistent conversational arc; you need to correctly pick up on people, places, or products that are mentioned; you need to be able to respond to curveball topics the other speaker may introduce, and you need to contribute novel directions so the conversation doesn’t become boring. There are still many times that Chirpy’s conversations become unnatural when we fail at one or other of these subtasks, but we made noticeable progress. Our conversations in the finals this year averaged more than twice as long as last year's — a sign of success! — and sometimes things all came together, like when one conversant said that their favorite song was “Chocolate” — really “Gimme chocolate!!” — by BabyMetal, and the system recognized that correctly and said it was a great group and then proceeded to ask them what they thought about another BabyMetal song.

Rohini Srihari, University of Buffalo

Through our participation in the Alexa Grand Challenge, Team Proto from the University at Buffalo has gained invaluable hands-on experience and insights into human-bot communication as well as neural models for NLP.  Conversational AI has the potential to make a positive impact on people’s lives and we look forward to furthering our research in this area.

Marilyn Walker, University of California, Santa Cruz

We had a great time this year, it’s been really fun. We started off with a strong system that had many novel components from last year, and we doubled down on some of those. I myself worked on developing some new modules to explore particular research ideas of my own, and that was also amazingly fun and kept me really engaged.  It was great seeing some of our ideas from last year come into full fruition, like our idea of creating a dialogue manager that could flexibly interleave response generators for a particular topic, and thus create an infinite number of novel dialogue interactions for any topic. We made that component stronger and developed it to cover more topics. We put together a dynamic team led by Omkar Patil, a computer science engineering master’s student, with four seasoned PhD students from last year’s team. Then we added a great group of five NLP master’s students, who worked on Athena’s discourse model for their NLP capstone project. 

Alexa Prize Judge Paul Cutsinger
Paul Cutsinger, the head of Alexa developer strategy, was one of the judges for this year's finals competition, which took place in late July. Czech Technical University won the competition with a 3.28 average rating, and an average finals' competition interaction duration of 14 minutes and 14 seconds.

We like the idea of end-to-end dialogue systems, but we think they need more structure and control. So what we’ve created is a hybrid of neural and structured knowledge-informed modules. Many of Athena’s functionalities are an ensemble of classic rule-based components with neural-trained models. For example, our dialogue manager recognizes topics and then calls on response generators, but once a pool of responses has been created, we use a response ranker we’ve repeatedly retrained to select the best response in context. 

The NLP MS team’s new discourse model is a hybrid ensemble of rule-based co-reference engine, with a trained neural engine. We also created a novel user model component that controls the dialogue strategy by remembering the user, their interests and preferences, both within a conversation and across multiple conversations.

Jinho D. Choi, Emory University

This is an exciting time for Conversational AI Research as it is getting more attention than ever. We are grateful that we have been given an opportunity to interact with thousands of people everyday through our chatbot, Emora. This year, we have focused on developing a logic-based dialogue management framework that aims to mimic the inference process that humans make to understand context and derive multiple branches of implications to conduct engaging conversations. We believe that the Alexa Prize has successfully visualized a true potential of Conversational AI in daily applications, challenging a new level of human-computer interaction that our generation has dreamed of for a long time.

Research papers from each of the teams participating in Alexa Prize Grand Challenge 4 are now available on the Alexa Prize website.

A competition for university students dedicated to accelerating the field of conversational AI.

Latest news

The latest updates, stories, and more about Alexa Prize.
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Python (or R, Matlab, or equivalent) is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Bellevue
As an applied scientist, you will use your experience to initiate the design, development, execution and implementation of scientific research projects. Working closely with fellow research scientists and product managers, you will use your experience in modeling, statistics, and simulation to design models of new policies, simulate their performance, and evaluate their benefits and impacts to cost, reliability, and speed of our fulfillment network. Our teams are looking for experience in network and combinatorial optimization, algorithms, data structures, statistics, and/or machine learning. This position requires superior analytical thinking, and ability to apply their technical and statistical knowledge to identify opportunities for real world applications. You should be able to mine and analyze large data, and be able to use necessary programming and statistical analysis software/tools to do so. Amazon has positions available for Research Scientists in multiple locations across the US and Canada.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.