Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 8, 20258 min read
-
December 5, 20256 min read
Featured news
-
2025Retrieval-augmented generation (RAG) can enhance the generation quality of large language models (LLMs) by incorporating external token databases. However, retrievals from large databases can constitute a substantial portion of the overall generation time, particularly when retrievals are periodically performed to align the retrieved content with the latest states of generation. In this paper, we introduce
-
DCC 20252025Video compression enables the transmission of video content at low rates and high qualities to our customers. In this paper, we consider the problem of embedding a neural network directly into a video decoder. This requires a design capable of operating at latencies low enough to decode tens to hundreds of high-resolution images per second. And, additionally, a network with a complexity suitable for implementation
-
2025This work presents advancements in audio pretraining objectives designed to generate semantically rich embeddings, capable of addressing a wide range of audio-related tasks. Despite significant progress in the field, current methods often emphasize full fine-tuning in downstream applications, which can obscure the true potential of pretrained audio encoders. In this study, we present an audio encoder that
-
2025Existing automatic prompt engineering methods are typically designed for discriminative tasks, where new task prompts are iteratively refined with limited feedback from a single metric reflecting a single aspect. However, these approaches are suboptimal for generative tasks, which require more nuanced guidance beyond a single numeric metric to improve the prompt and optimize multiple aspects of the generated
-
Knowledge distillation is used, in generative language modeling, to train a smaller student model using the help of a larger teacher model, resulting in improved capabilities for the student model. In this paper, we formulate a more general framework for knowledge distillation where the student learns from the teacher during training, and also learns to ask for the teacher’s help at test-time following
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all