Customer-obsessed science


Research areas
-
July 29, 2025New cost-to-serve-software metric that accounts for the full software development lifecycle helps determine which software development innovations provide quantifiable value.
Featured news
-
Data sanitization in the context of language modeling involves identifying sensitive content, such as personally identifiable information (PII), and redacting them from a dataset corpus. It is a common practice used in natural language processing (NLP) to maintain privacy. Nevertheless, the impact of data sanitization on the language understanding capability of a language model remains less studied. This
-
2024How can we precisely estimate a large language model’s (LLM) accuracy on questions belonging to a specific topic within a larger question-answering dataset? The standard direct estimator, which averages the model’s accuracy on the questions in each subgroup, may exhibit high variance for subgroups (topics) with small sample sizes. Synthetic regression modeling, which leverages the model’s accuracy on questions
-
2024Modern language models (LMs) need to follow human instructions while being faithful; yet, they often fail to achieve both. Here, we provide concrete evidence of a trade-off between instruction following (i.e., follow open-ended instructions) and faithfulness (i.e., ground responses in given context) when training LMs with these objectives. For instance, fine-tuning LLaMA-7B on instruction following datasets
-
2024Question answering based on retrieval-augmented generation (RAG-QA) is an important research topic in NLP and has a wide range of real-world applications. However, most existing datasets for this task are either constructed using a single source corpus or consist of short extractive answers, which fall short of evaluating large language model (LLM) based RAG-QA systems on cross-domain generalization. To
-
2024Learning of preference models from human feedback has been central to recent advances in artificial intelligence. Motivated by the cost of obtaining high-quality human annotations, we study efficient human preference elicitation for learning preference models. The key idea in our work is to generalize optimal designs, a methodology for computing optimal information-gathering policies, to questions with
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all