Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
ICLR 2022 Workshop on DL4C2022We introduce NSEdit (neural-symbolic edit), a novel Transformer-based code repair method. Given only the source code that contains bugs, NSEdit predicts an editing sequence that can fix the bugs. The edit grammar is formulated as a regular language, and the Transformer uses it as a neural-symbolic scripting interface to generate editing programs. We modify the Transformer and add a pointer network to select
-
CVPR 2022 Workshop on Image Matching: Local Features & Beyond2022Unstructured object matching is a less-explored and very challenging topic in the scientific literature. This includes matching scenarios where the context, appearance and the geometrical integrity of the objects to be matched changes drastically from one image to another (e.g. a pair of pyjamas which in one image is folded and in the other is worn by a person), making it impossible to determine a transformation
-
NAACL 20222022Seq2seq language generation models that are trained offline with multiple domains in a sequential fashion often suffer from catastrophic forgetting. Lifelong learning has been proposed to handle this problem. However, existing work such as experience replay or elastic weighted consolidation requires incremental memory space. In this work, we propose an innovative framework, RMR_DSE, that leverages a recall
-
NAACL 20222022We present a method to control the emotional prosody of Text to Speech (TTS) systems by using phoneme-level intermediate features (pitch, energy, and duration) as levers. As a key idea, we propose Differential Scaling (DS) to disentangle features relating to affective prosody from those arising due to acoustics conditions and speaker identity. With thorough experimental studies, we show that the proposed
-
HPDC 20222022In data-intensive workloads, data placement and memory management are inherently difficult: the programmer and the operating system have to choose between (combinations of) DRAM and storage, replacement policies, as well as paging sizes. Efficient memory management is based on fine-grained data access patterns driving placement decisions. Current solutions in this space cannot be applied to general workloads
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all