Amazon Glamazon Gay Pride Month LGBTQIA+ Black Lives Matter
From top left to bottom right: Luyolo Magangane, applied scientist; Ruiwei Jiang, research scientist; Sheeraz Ahmad, applied scientist; Liz Dugan, user experience researcher; Shane McGarry, data scientist; Abhinav Aggarwal, applied scientist.
Credit: Glynis Condon

Pride and prejudice: 6 Amazon scientists share their experiences

Scientists from glamazon, Amazon’s LGBTQIA+ affinity group, say this year's Pride Month is as much about solidarity as it is about celebration.

In most cities around the world June is considered Pride Month, where people celebrate diversity and inclusion. It usually culminates in a parade or march to promote the self-affirmation, equality, and visibility of the lesbian, gay, bisexual, transgender, queer or questioning, intersex, and asexual or allied (LGBTQIA+) community.

At Amazon, it's no different. There's a community of more than 7,000 employees from across the globe who are part of glamazon, an affinity group and employee network, whose mission is to connect those interested in LGBTQIA+ issues to company resources and to each other and to showcase Amazon’s acceptance in communities worldwide.

Given current events, particularly global protests resulting from the videotaped killing of George Floyd by law enforcement officials and the recent U.S. Supreme Court ruling upholding LGBTQIA+ equality, we asked some of the scientists within this affinity group about the significance of this year’s Pride Month.

Abhinav Aggarwal, applied scientist, Alexa Trust

Abhinav Aggarwal (pronouns: he/him/they/them) joined Amazon about nine months ago, after obtaining his PhD in computer science from the University of New Mexico in 2019. His work focuses on building customer trust by designing privacy-preserving machine learning algorithms for handling customer data.

Abhinav Aggarwal, applied scientist, Alexa Trust
Abhinav Aggarwal, applied scientist, Alexa Trust

“Since I joined Amazon, I’ve only had a very passive interaction with glamazon through emails. But I feel like the variety of topics discussed there is absolutely amazing. It’s not just LGBTQIA+ issues; there are thoughts about body positivity, gender pronouns, having pronouns on badges, and issues around diversity and inclusion,” he said.

“But I’d like to see more gender-neutral restrooms in the buildings and use of the ‘they’ pronoun by default,” he says. “Whenever I refer to someone I don’t personally know or even know of at all, I default to using ‘they/them’ as a pronoun. It would be nice to see this as common practice and not assuming someone’s gender based on familiarity with the name, which aligns with the removal of unconscious bias and helps with acceptance.”

With privacy and fairness in AI becoming an increasingly important topic, Aggarwal sees similar issues within his field.

“You don’t want your models for services like Alexa to give you results that are gender-biased, especially as we move towards a more gender-neutral world,” Aggarwal explains. “Ideally, our models should produce gender-agnostic results, and we must work backwards from this goal when defining gender-based fairness. That’s something I’ve felt a lot of pushback with within the industry, because the problem becomes far more complex if you talk about gender neutrality and the continuous spectrum of gender, instead of just the binary male or female.”

Aggarwal sees celebrating Pride Month as a step towards this awareness.

“I think these movements are absolutely necessary because they call out basic human rights against discrimination. They call out a very fundamental way of how we think we should be treated. LGBTQIA+ is a tag to help identify and understand ourselves better. It doesn’t change who we are as a person. It doesn’t change how technically advanced or skilled we are. It doesn’t change how we are going to perform at Amazon,” Aggarwal emphasizes.

“If the person is a good human being at heart, helps society and contributes to the general well-being of the nation, that’s what’s more important, independent of whether they are gay, lesbian, Black, white or associate themselves in any other way. Acknowledgement of this label-agnostic human existence is much more than man-made tags.”

Sheeraz Ahmad, applied scientist, Amazon SageMaker Ground Truth

Sheeraz Ahmad (pronouns: he/him) joined Amazon more than four years ago as a research scientist. Today, he works as an applied scientist on Amazon SageMaker Ground Truth team, an AWS data-labeling service that makes it easy to build highly accurate training data sets for machine learning.

Sheeraz Ahmad, applied scientist, Amazon SageMaker Ground Truth
Sheeraz Ahmad, applied scientist, Amazon SageMaker Ground Truth

Prior to Amazon, he received his PhD in computer science from the University of California San Diego (UCSD), where he focused on computational modeling of human and animal behavior in different domains, with the goals of gaining insights into the inner workings of the brain and developing behaviorally inspired machine learning models.

Ahmad, who grew up in Kanpur, India, previously earned his bachelor’s degree in electrical engineering from the prestigious Indian Institute of Technology Kanpur.

In Kanpur, Ahmad's experience was that being on the LGBTQIA+ spectrum was not well accepted, and he didn’t have many role models to follow. That changed after college when he moved to a larger city, Bangalore, and especially when he attended UCSD, where “I came across people who were out and proud and doing amazing things in life.”

Now, as an active member of Amazon’s glamazon affinity group, Ahmad is a role model himself. When he first joined Amazon, he appreciated glamazon’s support and attended events but found socializing difficult in some of the larger events. So for more than four years now, he’s organized monthly game nights, where a smaller group of glamazon members in Seattle get together to socialize and play board games. Even during the COVID-19 pandemic the tradition has continued, though online.

Pride Month is especially meaningful to Ahmad, but this year “the tone is more somber, understandably so.”

“There’s a lot going on, and as much as there is to celebrate, there’s so much more to be done. This month, as a gay man, my focus is more on being an ally for people who are going through their own struggles,” he says. “Gay men have faced discrimination and hardship, and we need to lean into those experiences, remember all the pain we’ve gone through, and be there for the womxn and our African-American brothers and sisters.

“I’m sharing with my friends, who tend to be somewhat conservative, how I have felt, based on my own experiences, and trying to relate how all members of the LGBTQIA+ community are feeling now, especially those who are African American. It’s important to be there for them, to be an ally, providing solidarity.”

“This year," Ahmad says, “feels less about celebration and more about solidarity.”

Liz Dugan, user experience researcher, Amazon Alexa

Liz Dugan (pronouns: she/her) joined Amazon earlier this year and during her onboarding experience learned about the glamazon affinity group. The voice user interface researcher, who earned a bachelor’s degree in psychology and a master’s degree in cognitive psychology from the University of Oklahoma, self-identifies as a queer, bisexual woman. She immediately felt welcomed by glamazon members.

Liz Dugan, user experience researcher, Amazon Alexa
Liz Dugan, UX researcher, Amazon Alexa

“Since I’ve been here, I’ve noted more and more people joining the group, and everyone is treated the same. People reach out and say, ‘How can we help you? Is there anything we can provide you? Please let us know if there’s anything you need.’ So you immediately feel as though this is a safe place.”

On this day, despite recent events, Dugan is more upbeat, as the Supreme Court has just ruled that a landmark civil-rights law protects gay and transgender workers from workplace discrimination. “An employer who fires an individual merely for being gay or transgender defies the law,” Justice Neil M. Gorsuch wrote for the majority in the court’s 6-to-3 ruling.

“So the LGBTQIA+ community just had a very historic win today. We wouldn’t be experiencing the moment we are today without Stonewall,” she says, referring to the 1969 New York City Stonewall riots that are considered one of the most important events leading to today’s fight for LGBTQIA+ rights.

“Everything we have today started with Stonewall, which was a riot started by trans people of color. So today we can live publicly and authentically and mostly safe from verbal abuse because of Black trans activists. Yet today we are still seeing those same populations being actively targeted and murdered without any real recourse or much publicity. Just within the past few days two Black trans women were murdered, and I’ve seen no one talk about it.”

“Some of the freedoms we enjoy today are because of Black trans women, and yet we continue to fail them as a privileged group of gay mostly white individuals, and we’re not doing enough to support the Black Lives Matter movement now. …We need to return to our roots and lift up our brothers and sisters who are suffering. They started the movement for us, and we need to be there for them now.”

Like other colleagues, Dugan feels like this year’s Pride Month is less a time to celebrate and more a time to continue pushing for progress.

“It’s a moment to return to our community’s roots. We still have problems,” she says. “We still have youth who don’t have homes and are struggling; we still have people who are discriminated against; we still have people who are being brutalized and murdered. So while we can be proud of what we’ve accomplished, we still have work to do. We have to carry our pride but still get our hands dirty. Stonewall wasn’t a celebration. Stonewall was a riot. So we have to keep fighting.”

Ruiwei Jiang, research scientist, Alexa Domains - HHO

Before joining Amazon as a research scientist, Ruiwei Jiang (pronouns: she/her) studied computational genetics in college, working in particular on human DNA. Her studies explored the adverse impact of pollution on human genetic encoding, comparing the short- and long-term effects of living in a polluted versus non-polluted environment.

Ruiwei Jiang, research scientist, Alexa Domains
Ruiwei Jiang, research scientist, Alexa Domains

“It might not sound super relevant to Alexa, but you're doing computation decks, working with a lot of data, writing code and doing a lot the analysis and building out of models, so that sort of became transferable knowledge,” she says.

Her role within the Alexa Household Organization, whose mission is to help Alexa help families stay organized and connected with one another, is to maintain the natural-language-understanding framework for features such as reminders, calendar tasks, weather, and recipes, as well as for creating models to improve customer retention.

“The world is moving towards conversational AI,” she says, “and it’s cool to be able to say you’re working in this field and developing models that are actually being used by customers, who are directly benefiting from it.”

Jiang is based in Amazon’s Vancouver office, where she’s experienced many positive actions from the glamazon affinity group, which have warmed her heart.

“They organize meetings in the office on a Sunday afternoon or Saturday morning, before the Pride parade, and hand out stickers. It’s a small thing, but it all adds up. Previous companies I’ve worked at have never really stood up as a corporation and been like ‘hey, we’re going to do something together for the Pride parade’. But at Amazon, it’s like ‘hey, let’s get together and show our support and be part of the community’, which is really inspiring.”

As a self-proclaimed ally, she can relate to the LGBTQIA+ community. “Growing up in Canada as a Chinese Canadian, I know how it feels to be to be left out and stigmatized and not feel like you're part of the group, or welcome. So I can imagine how other groups of people feel, even if I don’t have full visibility into all the problems and discrimination that they face. I think it’s important to stand up for what I think is right and not just have those values and keep it to myself.”

In light of recent events, she’s been impressed by the top-down communication at Amazon, from vice president to director level, with each leader taking the time to listen to employees and expressing their views that what’s happening to Black people in the U.S. isn’t right.

“We need to make the workplace more human than it is right now. We spend eight hours a day here, and we make friends. It’s also about keeping that diversity in hiring, which I think is one of the best ways to break down barriers, by having cross-community, cross-culture, cross-gender friendships and communications.”

Mentoring is another way Jiang promotes diversity and inclusion. “I’m what they call ‘women in tech’, and I’ve been in my career for about six years, so I think it’s important to mentor other women and girls, so they don’t feel left out or scared.”

Luyolo Magangane, applied scientist, Amazon Elastic Compute Cloud (EC2)

Located in South Africa, Luyolo Magangane (pronouns: he/him) joined Amazon just over a year ago, after a friend referred him for a machine learning role.

Luyolo Magangane, applied scientist, Amazon Elastic Compute Cloud (EC2)
Luyolo Magangane, applied scientist, Amazon Elastic Compute Cloud (EC2)

“I’m in the placement team, and we try to help customers have the best experience possible whenever they use AWS. So if a customer launches an EC2 instance, my team is in charge of the decision-making algorithm that chooses where to place that instance,” he explains.

Prior to Amazon, he studied electrical and computer engineering at the University of Cape Town and obtained a master’s degree in artificial intelligence at Stellenbosch University. He had a few jobs within the industry before joining Amazon.

He’s a member of Amazon’s glamazon affinity group, where he identifies as an ally and believes it’s important that others do too.

“Everyone should believe in the respect of the humanity of people first. When you meet someone, you have no context of their background or how they grew up. The only thing you know is that you are human, and they're also human. Your sexual orientation, gender identity, or racial identity doesn’t matter. It becomes much harder to be bigoted and to oppress someone if everyone starts from that perspective,” he says.

Magangane believes his support for the LGBTQIA+ community stems from his childhood, during which South Africa saw the end of apartheid, a system of institutionalized racial segregation from 1948 until the early 1990s.

“That was when [Nelson] Mandela was released from prison. That was when you could see the tides of change coming, from minority rule to democracy, which was incredible,” he explains.

“Every day I was encouraged to dream. And so, the benefit of being born in an environment like that led to me being born very free of prejudice. But because, historically, I come from a somewhat conservative background, I have a lot of friends and family who I care about who aren't as open minded as I think they could be.”

When he thinks about Pride and the Black Lives Matter movement and what society can learn from these events, he quotes Killer Mike, an American rapper, songwriter, actor, and activist: “It’s to ‘strategize, organize, and mobilize’, peaceful protests. It’s always done through people organizing, coming out, being peaceful, and saying that we believe what's happened is wrong and things need to change,” he says.

“I think part of that is not tolerating bigotry, which is one of the challenges you have to deal with in the Black community. You’re taught to pick and choose your battles, but you end up tolerating all those things that you don't battle, which only encourages it. You have to look bigotry in the eye and demand change. You cannot tolerate any of that. Even if institutions have to change, we’re demanding the change now.”

Shane McGarry, data scientist, Amazon Fashion

Shane McGarry (pronouns: they/them) joined Amazon earlier this year as a data scientist, focused on improving the company’s fashion catalogue using machine learning and other techniques “to create a stellar experience for our customers.”

Shane McGarry, data scientist, Amazon Fashion
Shane McGarry, data scientist, Amazon Fashion

McGarry, who identifies as non-binary, meaning they (McGarry prefers the pronouns they/them to he/she, thus the use of their, they, and them in this section) don’t exclusively identify as a man or a woman, recently earned their PhD in computer science from Maynooth University, about 25 minutes outside Dublin, Ireland, where their thesis work focused on improving the search experience within digital research environments (historical records, etc.) through visual search techniques.

Before joining Amazon, McGarry held several software development roles, where they encountered challenges.

“I’m non-binary, and I’m not traditionally masculine in any way shape or form, from my speech patterns to the way I carry myself,” McGarry explains. “What I found is that I was often ignored in ways that my colleagues with the same level of experience weren’t. When working with clients, if I dealt with them over email, they were receptive to my ideas, but when we started talking over the phone and they would hear my voice, suddenly they would become skeptical of what I was saying.”

McGarry says they encountered similar challenges with management.

“There were a lot of times when my opinion was brushed to the side, despite being proven consistently right. I would say ‘I see a problem; I think we should do this differently.’ They would ignore me, and no matter how many times I was proven right, I was never taken seriously.”

Affinity groups and diversity at Amazon

After joining Amazon, McGarry became involved in glamazon, one of 12 affinity groups within the company aimed at bringing employees together across businesses and locations around the globe. They’ve been impressed with glamazon and with their organization’s response to recent events related to the killing of George Floyd and how it’s recognizing Pride Month.

“The management within Amazon Fashion has really impressed me, especially within the past few weeks with everything that’s been occurring. …The president of our business had an all-hands meeting where she invited a global diversity and inclusion leader who has dealt with racial trauma. She talked to us about racial trauma, what it is, and how it affects people.”

Asked about lessons we can derive from recent current events, McGarry says, “In terms of the Black Lives Matter movement, it’s really important for us as individuals, as well as the company as a whole, to examine our racial biases that result from growing up in a culture that favors white people. Having a racial bias doesn’t make you a bad person. But refusing to acknowledge it, to examine it, and to work towards unlearning it, that’s where the problem lies.”

McGarry, who grew up in northeast Ohio within a deeply religious family, understands firsthand the challenges of dealing with bias and prejudice. For McGarry, Pride Month represents an opportunity to celebrate who they are without fear.

“As someone who grew up in the eighties and nineties in a deeply religious home where being gay wasn’t acceptable, and hearing messages from the community and church that gay people are evil, that God hates them, you get inundated with all of these negative messages, and you really begin to hate yourself, who you are, and you live in constant fear. So for me, Pride Month is about letting a lot of that go and celebrating yourself for who you are and really embracing it. At the same time, we have to remember our history, how far we’ve come, but yet how far we still need to go.”

Read more stories like this in our Working at Amazon section, or take a look at some of our available career opportunities in science.

Research areas

Related content

US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problems in the Amazon scale? Are you excited about utilizing statistical analysis, machine learning, data mining and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring a Data Scientist who has a solid background in Statistical Analysis, Machine Learning and Data Mining and a proven record of effectively analyzing large complex heterogeneous datasets, and is motivated to grow professionally as a Data Scientist. Key job responsibilities - You will work on our Science team and partner closely with applied scientists, data engineers as well as product managers, UX designers, and business partners to answer complex problems via data analysis. Outputs from your analysis will directly help improve the performance of the ML based recommendation systems thereby enhancing the customer experience as well as inform the roadmap for science and the product. - You can effectively analyze complex and disparate datasets collected from diverse sources to derive key insights. - You have excellent communication skills to be able to work with cross-functional team members to understand key questions and earn the trust of senior leaders. - You are able to multi-task between different tasks such as gap analysis of algorithm results, integrating multiple disparate datasets, doing business intelligence, analyzing engagement metrics or presenting to stakeholders. - You thrive in an agile and fast-paced environment on highly visible projects and initiatives. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
At Amazon Fashion, we are obsessed with making Amazon Fashion the most loved fashion destinations globally. We're searching for Computer Vision pioneers who are passionate about technology, innovation, and customer experience, and who are enthusiastic about making a lasting impact on the industry. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey and change the world of eCommerce forever Key job responsibilities As a Applied Scientist, you will be at the forefront to define, own and drive the science that span multiple machine learning models and enabling multiple product/engineering teams and organizations. You will partner with product management and technical leadership to identify opportunities to innovate customer facing experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but more importantly influence strategy and outcomes across different Amazon organizations such as Search, Personalization and more. This role is inherently cross-functional and requires a strong ability to communicate, influence and earn the trust of software engineers, technical and business leadership. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, NY, New York
Amazon is investing heavily in building a world-class advertising business, and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. We deliver billions of ad impressions and millions of clicks daily and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with advertised products with a high relevance bar and strict latency constraints. Sponsored Products Detail Page Blended Widgets team is chartered with building novel product recommendation experiences. We push the innovation frontiers for our hundreds of millions of customers WW to aid product discovery while helping shoppers to find relevant products easily. Our team is building differentiated recommendations that highlight specific characteristics of products (either direct attributes, inferred or machine learned), and leveraging generative AI to provide interactive shopping experiences. We are looking for a Senior Applied Scientist who can delight our customers by continually learning and inventing. Our ideal candidate is an experienced Applied Scientist who has a track-record of performing deep analysis and is passionate about applying advanced ML and statistical techniques to solve real-world, ambiguous and complex challenges to optimize and improve the product performance, and who is motivated to achieve results in a fast-paced environment. The position offers an exceptional opportunity to grow your technical and non-technical skills and make a real difference to the Amazon Advertising business. As a Senior Applied Scientist on this team, you will: * Be the technical leader in Machine Learning; lead efforts within this team and collaborate across teams * Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, perform hands-on analysis and modeling of enormous data sets to develop insights that improve shopper experiences and merchandise sales * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. * Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new and innovative machine learning approaches. * Promote the culture of experimentation and applied science at Amazon Team video https://youtu.be/zD_6Lzw8raE We are also open to consider the candidate in Seattle, or Palo Alto. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Sourcing and Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. Key job responsibilities As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. About the team Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Amazon Advertising Impact Team is looking for a Senior Economist to help translate cutting-edge causal inference and machine learning research into production solutions. The individual will have the opportunity to shape the technical and strategic vision of a highly ambiguous problem space, and deliver measurable business impacts via cross-team and cross-functional collaboration. Amazon is investing heavily in building a world class advertising business. Our advertising products are strategically important to Amazon’s Retail and Marketplace businesses for driving long-term growth. The mission of the Advertising Impact Team is to make our advertising products the most customer-centric in the world. We specialize in measuring and modeling the short- and long-term customer behavior in relation to advertising, using state of the art econometrics and machine learning techniques. With a broad mandate to experiment and innovate, we are constantly advancing our experimentation methodology and infrastructure to accelerate learning and scale impacts. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. Key job responsibilities • Function as a technical leader to shape the strategic vision and the science roadmap of a highly ambiguous problem space • Develop economic theory and deliver econometrics and machine learning models to optimize advertising strategies on behalf of our customers • Design, execute, and analyze experiments to verify the efficacy of different scientific solutions in production • Partner with cross-team technical contributors (scientists, software engineers, product managers) to implement the solution in production • Write effective business narratives and scientific papers to communicate to both business and technical audience, including the most senior leaders of the company We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Seattle, WA, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. The team build advanced deep-learning models, large-scale machine-learning (ML) pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. We are looking for an Applied Scientist, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would ensure relevant and useful ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize cutting-edge machine learning techniques in the domain of predictive modeling, natural language processing (NLP) and Transformer, deep learning, reinforcement learning, query understanding, and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Key job responsibilities As a Senior Applied Scientist on this team, you will: • Be the technical leader in Machine Learning; lead efforts within this team and across other teams. • Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. • Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. • Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. • Run A/B experiments, gather data, and perform statistical analysis. • Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. • Research new and innovative machine learning approaches. • Conduct experiment with LLM training and finetuning, prompt engineering • Recruit Applied Scientists to the team and provide mentorship. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Interested in using the latest, cutting edge machine learning and science to improve the Amazon employee experience? This role provides applied science leadership to the organization that develops and delivers data-driven insights, personalization, and nudges into Amazon's suite of talent management products to help managers, employees, and organizational leaders make better decisions and have better, more equitable outcomes. Key job responsibilities As the Principal Applied Scientist for GTMC SIERRA, you will be responsible for providing scientific thought leadership over multiple applied science and engineering teams. Each of these teams has rapidly evolving and complex demands to define, develop, and deliver scalable products that make work easier, more efficient, and more rewarding for Amazonians. These are some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves. You will also play a critical role in the organization's business planning, work closely with senior executives to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop engineering and science talent. You will provide science thought leadership and support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing market. About the team Global Talent Management & Compensation (GTMC) SIERRA (Science, Insights, Experience, Research, Reporting & Analytics) is a horizontal, multi-disciplinary organization whose mission is to be a force multiplier for the broader GTMC organization and our key customer cohorts. We accomplish this by using our expertise in data analytics and science, economics, machine learning (ML), UX, I/O psychology, and engineering to build insights and experiences that raise the bar in understanding and shaping decision making at scale by integrating within and across talent journeys as well as through self-service tools and closed loop mechanisms outside of those journeys. Our portfolio of products spans foundational data sources, metrics, and research through to finished features and products that our end-customers interact with on a daily basis. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA