Garrett van Ryzin
Garrett van Ryzin joined Amazon's Supply Chain Optimization Technologies organization in August as a distinguished scientist.
Credit: Jesse Winter/Cornell University

How distinguished scientist Garrett van Ryzin is optimizing his time at Amazon

van Ryzin is focusing on driving innovations in areas ranging from inventory management to last-mile delivery.

Amazon announced in August 2020 that Garrett van Ryzin would be joining the company’s Supply Chain Optimization Technologies (SCOT) organization as a distinguished scientist. SCOT is responsible for designing, building, and operating the Amazon supply chain. SCOT systems manage inventory for the millions of items on Amazon, compute accurate delivery expectations for customer orders, and drive meaningful changes to Amazon’s fulfillment center network so that customers receive their packages in the most efficient way possible.

Prior to Amazon, van Ryzin was a professor of Operations, Technology and Information Management at Cornell Tech, and previously the Paul M. Montrone Professor of Decision, Risk, and Operations at the Columbia University Graduate School of Business.  His university research work has focused on algorithmic pricing, demand modeling, and stochastic optimization.

van Ryzin was also the head of marketplace optimization at ridesharing companies Lyft and Uber, where he led teams that developed models for a variety of functions, such as optimally dispatching drivers to riders, and developing pricing models and driver pay systems that improve market efficiency. Interestingly, van Ryzin’s paper that he wrote while pursuing his PhD at MIT “A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane” imagined a world of on-demand transportation as far back as 1991.

During his career, van Ryzin’s work on complex revenue management problems has enabled businesses across diverse industry sectors to get the most out of their limited capacity. To give just a few examples, van Ryzin’s research has enabled airlines to make a series of large-scale, dynamic and sequential decisions to determine the optimal price of a ticket at a particular moment in time. Retail companies have used similar dynamic optimization to manage inventory levels and prices for different products to maximize revenue.

What I find particularly interesting are problems that move beyond the constraints of optimizing within the system, to actually redesigning the system itself. 
Garrett van Ryzin

However, at Uber and Lyft van Ryzin tackled a new business environment, where revenue maximization wasn’t the primary goal. Instead, van Ryzin’s teams focused on optimizing more immediate metrics that were vital to the very survival of their services: service reliability, driver productivity, and growth.

For example, having a sufficient number of idle drivers at any given time is critical to maintaining throughput in ridesharing services. Surge pricing, a mechanism that van Ryzin’s team at Uber optimized, maintains an efficient level of idle drivers and encourages more drivers to get on the street during peak hours when they are needed the most.

van Ryzin sees technology-enabled service providers — be it at a ridesharing company like Lyft or the Fulfilled by Amazon (FBA) service — as transformational.  Only a few decades ago, businesses like these weren’t viable ways to organize service delivery due to high transaction costs and lack of real-time information. However, technology has radically improved information exchange and reduced transaction costs, which allows independent sellers to sell their products on Amazon much more efficiently than they could on their own.

In this interview, van Ryzin spoke about the different facets of market optimization, the intricacies of making automated decisions at scale, managing system complexity using approximation and decomposition ideas, and why he joined Amazon.

Q. What are the different elements of optimization?

I’d like to think of optimization being made up of human, technical and operational elements.

At a human level, the understanding of behavioral economics is absolutely critical. You have to create the right incentives for both suppliers and buyers to drive efficiencies. This is especially important for companies like Amazon that have many buyers and sellers participating and a high degree of decentralized activity. 

In addition to the human considerations, you also must develop a deep understanding of the technical elements of how these marketplaces work – the capabilities and limitation of the technology – which in turn allows you to gain insights into what structural changes are possible.

Finally, building services like Amazon that provide physical goods and services is a much more complicated endeavor than developing a service for trading virtual entities like stocks or mutual funds. To give just one example, at Amazon we are shipping actual, physical goods. This means the underlying physics of the infrastructure and the different operational elements are critical. So you must also think about your service in terms of factors like product weight and size, labor requirements, storage capacity, inventory levels, and lead times.

From a scientific perspective, there are several open questions in all three elements of market optimization. A fundamental one is determining the best approach to take to develop models to drive efficiency.

One approach is to develop structural models from first principles. For example, you could make an assumption that consumers are utility maximizers, develop a utility function and identify the parameters that constitute this utility function.

Garrett van Ryzin
Garrett van Ryzin, Amazon distinguished scientist

You could also take a radically different approach and build models based only on the underlying data – where you draw inferences from what the data alone tells you. Here, you’re not worrying about why something happened. Rather, you can use ideas from machine learning to estimate and refine predictive models without trying to understand the underlying mechanics.

What I find particularly interesting are problems that move beyond the constraints of optimizing within the system, to actually redesigning the system itself.  The ‘Wait and Save’ feature my group developed at Lyft is a good example. This product allows riders to opt into waiting for ten to fifteen minutes for a ride rather than having all rides be on-demand. In exchange for waiting, riders get a lower price. On the technology side, what we are doing here is actually changing the product in order to make the marketplace more efficient. I’ve always found there’s a lot more leverage in changing a system rather than optimizing within a fixed system.  It’s a lot trickier though because big structural changes often mean you have to get users comfortable with entirely new products or a completely new way of using the system.

Q. How do you account for the uncertainty and complexity inherent in large systems?

Approximation is at the heart of optimization because you can never fully represent the full complexity of a real-world trading system. For example, if a consumer places an order on Amazon, you have to make several sequential decisions with complex interactions.  Which fulfillment center should I take that order from? Should I place the items in the same box or should I pack them in different boxes? How will fulfilling this order impact the availability of inventory for the next order that comes in for that product? And how will it affect the available capacity of my local delivery assets?

You can develop approximation models by using a rolling horizon approach. This involves taking a best guess for what the future entails, and then updating your estimate for the future as and when you get new information. Or you could do something that’s far more sophisticated: build simulations of the future, and use sampling techniques to guide your decisions. You can also utilize reinforcement learning where you fit value functions to historical actions to arrive at decisions that are continually refined based on data.

Decomposition is also an important strategy for dealing with the interconnectedness of the different elements of the system. In large systems such as Amazon, everything is related to everything else. Supply affects costs, which affects pricing, which in turn affects demand, which affects dispatch, and so on. Ideally, you’d want to arrive at decisions by taking the whole system into account. However, the size of any real-world system makes this impossible. Any model you arrive at will be too complex, and you’d require a large amount of time to compute anything reasonable.

I’ve always been attracted to the idea of helping drive innovations to get people the basic, physical necessities that are essential to how they live.
Garrett van Ryzin

This is where decomposition comes in. You can break the system down into individual components – such as dispatch models, pricing models, inventory models and so on. The challenge here is to get these different models to collaborate. You don’t want scenarios where they are working at cross purposes with each other. For example, you don’t want one model trying to get rid of an item and have another model actively trying to replace it. In cases like these, you can drive coordination between different models using an internal price or some other mechanism that’s common to all the models.

These are just some of the trickiest issues in optimization, and I’m excited to be at Amazon where a lot of the innovation in these areas is taking place.

Q. Why did you decide to join Amazon?

I’ve always admired Amazon as a company because of its incredible track record of innovation across so many areas. I remember shopping at Amazon when they just sold books. And today, you have Amazon Studios, AWS, Amazon Devices, Alexa and even Project Kuiper where Amazon is putting up over 3,000 satellites in space.

Amazon is a company that excels at understanding economic opportunity and then building products and services that customers value. I’ve only been here for a few months, but I can already see how the company’s unique culture helps it be so successful across so many areas.

I also admire the company’s long-term perspective. Amazon doesn’t make decisions based on driving quarter-over-quarter performance. Amazon is willing to stick with ideas for many years. This appeals to me as a scientist as in my experience, sticking with the right idea over the long term is essential to making fundamental breakthroughs.

At SCOT, I’m excited to have the opportunity to contribute across so many areas, from FBA to last-mile delivery. Over the last few months, Amazon has helped so many people across the world get essential items during the pandemic. I’ve always been attracted to the idea of helping drive innovations to get people the basic, physical necessities that are essential to how they live.

Related content

IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Device organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful science leader in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have solid technical background and extensive experience in leading projects and technical teams. The ideal candidate would also have experiences in developing natural language processing systems (particularly LLM based systems) for industry applications, enjoy operating in highly dynamic and ambiguous environments, be self-motivated to take on challenging problems to deliver customer impact. In this role, you will lead a team of scientists to fine tune and evaluate the LLM to improve instruction following capabilities, align human preferences with RLHF, enhance conversation responses with RAG techniques, and various other. You will use your management, research and production experience to develop the team, communicate direction and achieve the results in a fast-paced environment. You will have significant influence on our overall LLM strategy by helping define product features, drive the system architecture, and spearhead the best practices that enable a quality product. Key job responsibilities Key job responsibilities Build a strong and coherent team with particular focus on sciences and innovations in LLM technologies for conversation AI applications Own the strategic planning and project management for technical initiatives in your team with the help of technical leads. Provide technical and scientific guidance to your team members. Collaborate effectively with multiple cross-organizational teams. Communicate effectively with senior management as well as with colleagues from science, engineering and business backgrounds. Support the career development of your team members.