George Michailidis paper abstract.jpg
Sequential change-point detection in high-dimensional Gaussian graphic models”, published by Hossein Keshavarz, a senior data scientist at relationalAI; George Michailidis; and Yves Atchadé, a professor of statistics at Boston University, touches on the theme of anomaly detection.

George Michailidis: How to identify important changes in online networks

Amazon Scholar discusses the evolution of anomaly detection research.

As the director of the University of Florida Informatics Institute, George Michailidis, who is also an Amazon Scholar on the Supply Chain Optimization Technologies (SCOT) team, leads a diverse community of data scientists with training in engineering, statistics, applied math, and other sciences. He notes that assortment of backgrounds is important in data science.

George Michailidis is the director of the University of Florida Informatics Institute, and an Amazon Scholar on the Supply Chain Optimization Technologies team.
George Michailidis is the director of the University of Florida Informatics Institute, and an Amazon Scholar on the Supply Chain Optimization Technologies team.

“In addition to statistics, there are a number of other disciplines that data scientists need to be aware of, such as programming, algorithms, optimization, and of course, some subject matter expertise because you don't do data science in a vacuum,” he says.

Michailidis was trained in applied mathematics and statistics, with a PhD thesis focused on optimization problems and its applications to statistical problems. His postdoc was in operations research, which introduced him to a different class of problems. “Some of them come about in Amazon’s supply chain, for example, such as problems of how to schedule the jobs on the machine, or how to route the traffic in the network, and so forth.”

For about 17 years, Michailidis was a faculty member at the University of Michigan in statistics with a joint appointment in electrical engineering. “I combined my statistical training with my interest in engineering types of problems.”

Data integration

Since then, his research agenda at the University of Florida has had strong theoretical components, but he remains very interested in practical applications. One of his current interests is data integration, and its many potential uses. For example, when it comes to the study of diseases, there is a wealth of molecular-level data from patients’ samples. At the same time, there is information on the patient's clinical records and demographics.

Related content
Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

“How do you create models to try to identify key drivers, for example, for disease progression by combining all these different data sources,” is one of the questions that motivates Michailidis’ work. With these models, he tries to provide insights both for prognostic or diagnostic purposes, but also for the understanding of the biological mechanisms that lead to that disease.

Another large component of Michailidis’ research relates to a problem known as anomaly detection. “This is an old problem that has been going on for more than 60 years,” he says. To a large extent, it originated in manufacturing, where people were interested in finding defects in the manufacturing process and fixing them. As the technology evolved, similar questions have been arising in many other fields.

This is broadly the theme of a paper published by Michailidis and his colleagues Hossein Keshavarz, a senior data scientist at relationalAI, and Yves Atchadé, a professor of statistics at Boston University, entitled “Sequential change-point detection in high-dimensional Gaussian graphic models.”

Michailidis notes that, as manufacturing processes became more complex, it became necessary to monitor many more metrics.

Related content
NASA is using unsupervised learning and anomaly detection to explore the extreme conditions associated with solar superstorms.

“A typical example of this complexity is semiconductor manufacturing, where you have to monitor hundreds of little things,” he says.

In more modern applications, the next step is to monitor networks.

“You’re not only monitoring a lot of things. Now these things are interconnected and you're trying to understand how this network, as an object, changes its structure at some point in time,” Michailidis explains. “And you're doing that in an online fashion because this process keeps going. You keep observing the network and you're trying to identify changes as quickly as possible.”

In addition to developing a technique to detect changes, researchers also must establish that their technique is sensitive enough for certain types of changes and determine whether it detects them quickly enough. This is the challenge, in the online realm, that Michailidis and his colleagues attempt to address in their paper. The paper introduces “introduces a novel scalable online algorithm for detecting an unknown number of abrupt changes”.

Related content
Ping Xu, forecasting science director within Amazon’s Supply Chain Optimization Technologies (SCOT) organization, talks about the importance of using science to forecast the future.

In the paper, the authors present an application on stock market data, where the network is made of movements of stocks. “We showed how the network changes, for example, during the great financial crisis of 2008, and how the stock market got affected by the European debt crisis in 2012 and so forth.” Michailidis notes that these techniques are especially suited for problems where there are dependencies between observable elements without knowledge of the nature of those dependencies.

“With stocks, whether they are moving together or in different directions, these movements —or lack of movement — is what gives rise to the network structure. And that’s what we are capturing with these graphical models,” he says.

Within the SCOT organization, Michailidis says he has the opportunity to tackle challenging problems at an unprecedented scale. “The problems are much more complex because they're not as clear cut as they are in academia.” In this interview, he discusses his research on anomaly detection and its potential applications.

  1. Q. 

    Your paper mentions high dimensional piecewise sparse graphical models. What does that entail and what are some applications?

    A. 

    The graphical model is a particular statistical model that tries to capture statistical dependencies between the things that are measured on the nodes. In the stock market example, you're looking at the rate of return of a stock. This is the measurement that you have on every node over time and you're trying to understand, for example, whether the return of one technology stock is correlated with the return of some other technology stock. So that's what the graphical model is trying to capture — the statistical dependencies.

    The next step is what we mean by high dimensional. Essentially, it means that the number of nodes, or variables, in your network becomes very large compared to how many observations you have. You may have a short observation period, but with a high number of nodes. What we call high-dimensional statistics became a big field of study 15 to 20 years ago, with a lot of applications. The reason is that, in more classical statistics, we always made the assumption that the sample size in our observations is much larger than the number of variables. In the high-dimensional regime, the relationship flips and you have many more variables than observations and that poses a whole bunch of technical challenges, to the point where you can’t even solve the problem.

    So, you need some additional assumptions, and that's where another important term comes in: sparse. This means that this network doesn't have too many connections. If it was very well connected, then we would not be able to solve the problem for technical reasons, because you would not have enough data. So, you make the assumption that these networks are not too connected to compensate for how much data you have.

    And the last term we need to understand is piecewise. By piecewise, we mean that, for this period, the network structure stays the same, and then changes abruptly to some other structure. It's not a gradual change — although this may be happening in reality. It heavily depends on the underlying application. It may either be a simplifying assumption in order to do the analysis or, in many cases, that's exactly what happens.

    In the neuroscience example, if the subject sits in the scanner without moving, and then you tell them — “raise your hand or read this sentence” — there is an abrupt change because there is a new task after a resting state. This is also possible in the stock market, where new information may create these abrupt changes.

    In many applications, there is really an abrupt change and this is the proper setting to use. In some other cases, changes may be a little bit more gradual. But we can still look at them as abrupt changes because it becomes a good working hypothesis and simplifies things. A lot of these techniques that people develop are good working models, and not exactly what's going on, that's fairly standard in a lot of scientific fields. And that explains the high dimensional piecewise sparse graphical model. That's where all the pieces come together.

  2. Q. 

    Why is it important to be able to detect these abrupt changes in an online setting?

    A. 

    Because you keep collecting the data, and you would like to identify these changes as things evolve. You could solve the same problem, with the same high dimensional sparse piecewise graphical model, in an offline manner. In that case, the difference is that you have already collected these data and would like to explore them in a retrospective manner to see if you can find these types of changes. That's also a problem of interest.

    The reason that in this article we focus on online detection is that we have already done work on the offline version, so it was natural to start exploring what is different in an online setting. And it's much, much more challenging, because you don't know the future and you keep getting new information, and you're trying to detect these changes quickly. Online problems in machine learning and other areas are more challenging than offline problems, as a general rule. So, this is for me a natural evolution, since I’ve already used these sparse graphical models in an offline setting.

  3. Q. 

    What does the paper demonstrate and how is it applicable to Amazon?

    A. 

    The paper does demonstrate that it is possible to detect these changes online, so it’s a positive message. And it also shows a caveat. If, for example, the changes in this connectivity pattern were concentrated on only one node, then we could not detect them with the current technology. Because that's a very localized change, it only involves a very tiny part of the network. And our technique would only be able to detect them by waiting for a very long time. From an applications perspective, that makes it uninteresting. That tells you the limitations, which are important in some settings. We have done most of the work, but we found out that we were missing something. So, we need to go and develop a little bit more.

    The results could be applicable to Amazon because these graphical models come up a lot. So far, we have used techniques where we haven't taken the connections into account, we have just looked simply at what is going on in the time series, let's say, of a single node and whether that changes. Obviously, given the fact that Amazon operates in a highly volatile environment, changes are important. In the longer term, given the fact that the team has done work with graphical models, it may be interesting to utilize some of these techniques. The potential is there.

    In general, anomaly detection work to date across many disciplines (statistics, signal processing, machine learning, econometrics) has largely focused on parametric models, where with some effort the theoretical properties of anomaly detection procedures can be elucidated analytically and then validated through simulations. The analytical work provides deeper insights into the performance of these anomaly detection procedures and their limitations, and when they do not perform well. With all the advances in deep learning models, they become prime tools to use in anomaly detection problems.

    However, the challenge then becomes, to understand the performance limits of such models, beyond relying on numerical work. Such advances may take some time, but once the community makes progress, much more powerful procedures will be available to the practitioners.

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, CA, Santa Clara
The AWS Neuron Science Team is looking for talented scientists to enhance our software stack, accelerating customer adoption of Trainium and Inferentia accelerators. In this role, you will work directly with external and internal customers to identify key adoption barriers and optimization opportunities. You'll collaborate closely with our engineering teams to implement innovative solutions and engage with academic and research communities to advance state-of-the-art ML systems. As part of a strategic growth area for AWS, you'll work alongside distinguished engineers and scientists in an exciting and impactful environment. We actively work on these areas: - AI for Systems: Developing and applying ML/RL approaches for kernel/code generation and optimization - Machine Learning Compiler: Creating advanced compiler techniques for ML workloads - System Robustness: Building tools for accuracy and reliability validation - Efficient Kernel Development: Designing high-performance kernels optimized for our ML accelerator architectures A day in the life AWS Utility Computing (UC) provides product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Additionally, this role may involve exposure to and experience with Amazon's growing suite of generative AI services and other cloud computing offerings across the AWS portfolio. About the team AWS Neuron is the software of Trainium and Inferentia, the AWS Machine Learning chips. Inferentia delivers best-in-class ML inference performance at the lowest cost in the cloud to our AWS customers. Trainium is designed to deliver the best-in-class ML training performance at the lowest training cost in the cloud, and it’s all being enabled by AWS Neuron. Neuron is a Software that include ML compiler and native integration into popular ML frameworks. Our products are being used at scale with external customers like Anthropic and Databricks as well as internal customers like Alexa, Amazon Bedrocks, Amazon Robotics, Amazon Ads, Amazon Rekognition and many more. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Application deadline: Applications will be accepted on an ongoing basis Amazon Ads is re-imagining advertising through cutting-edge generative artificial intelligence (AI) technologies. We combine human creativity with AI to transform every aspect of the advertising life cycle—from ad creation and optimization to performance analysis and customer insights. Our solutions help advertisers grow their brands while enabling millions of customers to discover and purchase products through delightful experiences. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground in product and technical innovations. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. As a Senior Applied Scientist at Amazon Ads, you will: • Research and implement cutting-edge machine learning (ML) approaches, including applications of generative AI and large language models • Develop and deploy innovative ML solutions spanning multiple disciplines, from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models • Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data • Build and optimize models that balance multiple stakeholder needs, helping customers discover relevant products while enabling advertisers to achieve their goals efficiently • Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams that include engineers, product managers, and other scientists • Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact • Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience Why you’ll love this role: This role offers unprecedented breadth in ML applications and access to extensive computational resources and rich datasets that will enable you to build truly innovative solutions. You'll work on projects that span the full advertising life cycle, from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll work alongside talented engineers, scientists, and product leaders in a culture that encourages innovation, experimentation, and bias for action, and you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their marks. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two Applied Scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/ Key job responsibilities As an Applied Scientist in Amazon Ads, you will: - Research and implement cutting-edge ML approaches, including applications of generative AI and large language models - Develop and deploy innovative ML solutions spanning multiple disciplines – from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models - Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data - Build and optimize models that balance multiple stakeholder needs - helping customers discover relevant products while enabling advertisers to achieve their goals efficiently - Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams including engineers, product managers, and other scientists - Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact - Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience A day in the life Why you will love this role: This role offers unprecedented breadth in ML applications, and access to extensive computational resources and rich datasets that enable you to build truly innovative solutions. You'll work on projects that span the full advertising lifecycle - from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll also work alongside talented engineers, scientists and product leaders in a culture that encourages innovation, experimentation, and bias for action where you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. About the team Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their mark. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two applied scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents for our autonomous campaigns experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Autonomous Campaigns team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware campaign creation and management system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The AGI Autonomy Perception team performs applied machine learning research, including model training, dataset design, pre- and post- training. We train Nova Act, our state-of-the art computer use agent, to understand arbitrary human interfaces in the digital world. We are seeking a Machine Learning Engineer who combines strong ML expertise with software engineering excellence to scale and optimize our ML workflows. You will be a key member on our research team, helping accelerate the development of our leading computer-use agent. We are seeking a strong engineer who has a passion for scaling ML models and datasets, designing new ML frameworks, improving engineering practices, and accelerating the velocity of AI development. You will be hired as a Member of Technical Staff. Key job responsibilities * Design, build, and deploy machine learning models, frameworks, and data pipelines * Optimize ML training, inference, and evaluation workflows for reliability and performance * Evaluate and improve ML model performance and metrics * Develop tools and infrastructure to enhance ML development productivity
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. This position will be part of the Conversational Ad Experiences team within the Amazon Advertising organization. Our cross-functional team focuses on designing, developing and launching innovative ad experiences delivered to shoppers in conversational contexts. We utilize leading-edge engineering and science technologies in generative AI to help shoppers discover new products and brands through intuitive, conversational, multi-turn interfaces. We also empower advertisers to reach shoppers, using their own voice to explain and demonstrate how their products meet shoppers' needs. We collaborate with various teams across multiple Amazon organizations to push the boundary of what's possible in these fields. We are seeking a science leader for our team within the Sponsored Products & Brands organization. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. An ideal candidate is able to navigate through ambiguous requirements, working with various partner teams, and has experience in generative AI, large language models (LLMs), information retrieval, and ads recommendation systems. Using a combination of generative AI and online experimentation, our scientists develop insights and optimizations that enable the monetization of Amazon properties while enhancing the experience of hundreds of millions of Amazon shoppers worldwide. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities - Serve as a tech lead for defining the science roadmap for multiple projects in the conversational ad experiences space powered by LLMs. - Build POCs, optimize and deploy models into production, run experiments, perform deep dives on experiment data to gather actionable learnings and communicate them to senior leadership - Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. - Work closely with product managers to contribute to our mission, and proactively identify opportunities where science can help improve customer experience - Research new machine learning approaches to drive continued scientific innovation - Be a member of the Amazon-wide machine learning community, participating in internal and external meetups, hackathons and conferences - Help attract and recruit technical talent, mentor scientists and engineers in the team
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders