George Michailidis paper abstract.jpg
Sequential change-point detection in high-dimensional Gaussian graphic models”, published by Hossein Keshavarz, a senior data scientist at relationalAI; George Michailidis; and Yves Atchadé, a professor of statistics at Boston University, touches on the theme of anomaly detection.

George Michailidis: How to identify important changes in online networks

Amazon Scholar discusses the evolution of anomaly detection research.

As the director of the University of Florida Informatics Institute, George Michailidis, who is also an Amazon Scholar on the Supply Chain Optimization Technologies (SCOT) team, leads a diverse community of data scientists with training in engineering, statistics, applied math, and other sciences. He notes that assortment of backgrounds is important in data science.

George Michailidis is the director of the University of Florida Informatics Institute, and an Amazon Scholar on the Supply Chain Optimization Technologies team.
George Michailidis is the director of the University of Florida Informatics Institute, and an Amazon Scholar on the Supply Chain Optimization Technologies team.

“In addition to statistics, there are a number of other disciplines that data scientists need to be aware of, such as programming, algorithms, optimization, and of course, some subject matter expertise because you don't do data science in a vacuum,” he says.

Michailidis was trained in applied mathematics and statistics, with a PhD thesis focused on optimization problems and its applications to statistical problems. His postdoc was in operations research, which introduced him to a different class of problems. “Some of them come about in Amazon’s supply chain, for example, such as problems of how to schedule the jobs on the machine, or how to route the traffic in the network, and so forth.”

For about 17 years, Michailidis was a faculty member at the University of Michigan in statistics with a joint appointment in electrical engineering. “I combined my statistical training with my interest in engineering types of problems.”

Data integration

Since then, his research agenda at the University of Florida has had strong theoretical components, but he remains very interested in practical applications. One of his current interests is data integration, and its many potential uses. For example, when it comes to the study of diseases, there is a wealth of molecular-level data from patients’ samples. At the same time, there is information on the patient's clinical records and demographics.

Related content
Gari Clifford, the chair of the Department of Biomedical Informatics at Emory University and an Amazon Research Award recipient, wants to transform healthcare.

“How do you create models to try to identify key drivers, for example, for disease progression by combining all these different data sources,” is one of the questions that motivates Michailidis’ work. With these models, he tries to provide insights both for prognostic or diagnostic purposes, but also for the understanding of the biological mechanisms that lead to that disease.

Another large component of Michailidis’ research relates to a problem known as anomaly detection. “This is an old problem that has been going on for more than 60 years,” he says. To a large extent, it originated in manufacturing, where people were interested in finding defects in the manufacturing process and fixing them. As the technology evolved, similar questions have been arising in many other fields.

This is broadly the theme of a paper published by Michailidis and his colleagues Hossein Keshavarz, a senior data scientist at relationalAI, and Yves Atchadé, a professor of statistics at Boston University, entitled “Sequential change-point detection in high-dimensional Gaussian graphic models.”

Michailidis notes that, as manufacturing processes became more complex, it became necessary to monitor many more metrics.

Related content
NASA is using unsupervised learning and anomaly detection to explore the extreme conditions associated with solar superstorms.

“A typical example of this complexity is semiconductor manufacturing, where you have to monitor hundreds of little things,” he says.

In more modern applications, the next step is to monitor networks.

“You’re not only monitoring a lot of things. Now these things are interconnected and you're trying to understand how this network, as an object, changes its structure at some point in time,” Michailidis explains. “And you're doing that in an online fashion because this process keeps going. You keep observing the network and you're trying to identify changes as quickly as possible.”

In addition to developing a technique to detect changes, researchers also must establish that their technique is sensitive enough for certain types of changes and determine whether it detects them quickly enough. This is the challenge, in the online realm, that Michailidis and his colleagues attempt to address in their paper. The paper introduces “introduces a novel scalable online algorithm for detecting an unknown number of abrupt changes”.

Related content
Ping Xu, forecasting science director within Amazon’s Supply Chain Optimization Technologies (SCOT) organization, talks about the importance of using science to forecast the future.

In the paper, the authors present an application on stock market data, where the network is made of movements of stocks. “We showed how the network changes, for example, during the great financial crisis of 2008, and how the stock market got affected by the European debt crisis in 2012 and so forth.” Michailidis notes that these techniques are especially suited for problems where there are dependencies between observable elements without knowledge of the nature of those dependencies.

“With stocks, whether they are moving together or in different directions, these movements —or lack of movement — is what gives rise to the network structure. And that’s what we are capturing with these graphical models,” he says.

Within the SCOT organization, Michailidis says he has the opportunity to tackle challenging problems at an unprecedented scale. “The problems are much more complex because they're not as clear cut as they are in academia.” In this interview, he discusses his research on anomaly detection and its potential applications.

  1. Q. 

    Your paper mentions high dimensional piecewise sparse graphical models. What does that entail and what are some applications?


    The graphical model is a particular statistical model that tries to capture statistical dependencies between the things that are measured on the nodes. In the stock market example, you're looking at the rate of return of a stock. This is the measurement that you have on every node over time and you're trying to understand, for example, whether the return of one technology stock is correlated with the return of some other technology stock. So that's what the graphical model is trying to capture — the statistical dependencies.

    The next step is what we mean by high dimensional. Essentially, it means that the number of nodes, or variables, in your network becomes very large compared to how many observations you have. You may have a short observation period, but with a high number of nodes. What we call high-dimensional statistics became a big field of study 15 to 20 years ago, with a lot of applications. The reason is that, in more classical statistics, we always made the assumption that the sample size in our observations is much larger than the number of variables. In the high-dimensional regime, the relationship flips and you have many more variables than observations and that poses a whole bunch of technical challenges, to the point where you can’t even solve the problem.

    So, you need some additional assumptions, and that's where another important term comes in: sparse. This means that this network doesn't have too many connections. If it was very well connected, then we would not be able to solve the problem for technical reasons, because you would not have enough data. So, you make the assumption that these networks are not too connected to compensate for how much data you have.

    And the last term we need to understand is piecewise. By piecewise, we mean that, for this period, the network structure stays the same, and then changes abruptly to some other structure. It's not a gradual change — although this may be happening in reality. It heavily depends on the underlying application. It may either be a simplifying assumption in order to do the analysis or, in many cases, that's exactly what happens.

    In the neuroscience example, if the subject sits in the scanner without moving, and then you tell them — “raise your hand or read this sentence” — there is an abrupt change because there is a new task after a resting state. This is also possible in the stock market, where new information may create these abrupt changes.

    In many applications, there is really an abrupt change and this is the proper setting to use. In some other cases, changes may be a little bit more gradual. But we can still look at them as abrupt changes because it becomes a good working hypothesis and simplifies things. A lot of these techniques that people develop are good working models, and not exactly what's going on, that's fairly standard in a lot of scientific fields. And that explains the high dimensional piecewise sparse graphical model. That's where all the pieces come together.

  2. Q. 

    Why is it important to be able to detect these abrupt changes in an online setting?


    Because you keep collecting the data, and you would like to identify these changes as things evolve. You could solve the same problem, with the same high dimensional sparse piecewise graphical model, in an offline manner. In that case, the difference is that you have already collected these data and would like to explore them in a retrospective manner to see if you can find these types of changes. That's also a problem of interest.

    The reason that in this article we focus on online detection is that we have already done work on the offline version, so it was natural to start exploring what is different in an online setting. And it's much, much more challenging, because you don't know the future and you keep getting new information, and you're trying to detect these changes quickly. Online problems in machine learning and other areas are more challenging than offline problems, as a general rule. So, this is for me a natural evolution, since I’ve already used these sparse graphical models in an offline setting.

  3. Q. 

    What does the paper demonstrate and how is it applicable to Amazon?


    The paper does demonstrate that it is possible to detect these changes online, so it’s a positive message. And it also shows a caveat. If, for example, the changes in this connectivity pattern were concentrated on only one node, then we could not detect them with the current technology. Because that's a very localized change, it only involves a very tiny part of the network. And our technique would only be able to detect them by waiting for a very long time. From an applications perspective, that makes it uninteresting. That tells you the limitations, which are important in some settings. We have done most of the work, but we found out that we were missing something. So, we need to go and develop a little bit more.

    The results could be applicable to Amazon because these graphical models come up a lot. So far, we have used techniques where we haven't taken the connections into account, we have just looked simply at what is going on in the time series, let's say, of a single node and whether that changes. Obviously, given the fact that Amazon operates in a highly volatile environment, changes are important. In the longer term, given the fact that the team has done work with graphical models, it may be interesting to utilize some of these techniques. The potential is there.

    In general, anomaly detection work to date across many disciplines (statistics, signal processing, machine learning, econometrics) has largely focused on parametric models, where with some effort the theoretical properties of anomaly detection procedures can be elucidated analytically and then validated through simulations. The analytical work provides deeper insights into the performance of these anomaly detection procedures and their limitations, and when they do not perform well. With all the advances in deep learning models, they become prime tools to use in anomaly detection problems.

    However, the challenge then becomes, to understand the performance limits of such models, beyond relying on numerical work. Such advances may take some time, but once the community makes progress, much more powerful procedures will be available to the practitioners.

Related content

US, WA, Seattle
Have you ever wanted to solve a mystery or be part of solving a case? Are you fascinated by detective stories or crime shows on TV? Do you love to catch bad actors, build ML models and solve complex problems. If so, working on the Loss Prevention Tech team as a Sr Applied Scientist is the place for you! We detect theft, fraud and organized crime happening across our global supply chain and operations for millions of items, for hundreds of product lines worth billions of dollars of inventory world-wide. We foster new game-changing ideas, creating ever more intelligent and self-learning systems to maximize the cost savings of Amazon's inventory losses. The primary role of a Sr Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on all the fraud investigations happening across Amazon operations. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in ( Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of building fraud detections, detecting organized crime and the ability to use data and research to make changes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Key job responsibilities - Own KPIs that measure fraud management performance and efficiencies. - Detect and automate theft, fraud MOs - Detect organized crime rings and bad actor clusters - Build data or computer vision based ML models - Perform end to end evaluation of operational defects, system gaps, and scaling challenges (both system and operational). - Contribute to the overall fraud management and product development strategies. - Present key learnings and vision to stakeholders and leadership. - Integrate ML detection models via software applications About the team We believe that building a culture that is welcoming and inclusive is integral to people doing their best work and is essential to what we can achieve as a company. We actively recruit people from diverse backgrounds to build a supportive and inclusive workplace. Our team puts a high value on work-live balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, TX, Dallas
Amazon is seeking a highly analytical and skilled Data Scientist to join our OpsTech Infrastructure Engineering (OTIE) team. The vision for our organization is to be the invisible scaffolding to provide Amazon’s network and device infrastructure for Global Operations. We deliver flexible, low-touch, cost-efficient infrastructure products by leveraging data, analytics, and automation to build a highly scalable and accessible network. If you are passionate about working with big data and thrive in a collaborative, innovative environment, we want to hear from you. As a Data Scientist, you will be responsible for data exploration and analyses, as well as AI model development. You will collaborate with data engineers to collect, preprocess, and maintain high-quality datasets. You will dive deep into the available data, identifying trends, patterns, and insights to inform AI initiatives. You will design, develop, and implement AI models, including machine learning and deep learning algorithms, to solve complex business challenges, ensuring that these models are optimized for accuracy, scalability, and real-time performance. You will support the deployment of AI models into production environments, ensuring efficient and reliable operation, and own the model performance monitoring, make improvements, and implement retraining strategies. Strong business and communication skills are essential for collaborating with business owners to develop key business questions and build solutions that provide answers and drive change. Key job responsibilities Thinking Big and generating ideas with the stakeholders. Working with customers and cross-functional stakeholder teams to identify, disambiguate, and define problems. Scoping long-term solutions as a series of smaller, more manageable iterations. Creating data science architectures, and building scalable solutions along with the data engineers. Running simulations, measuring performance, building ML models and designing optimization algorithms. Supporting existing models, while thinking about next generation solutions. Keep up-to-date with the latest AI research, technologies, and industry best practices. Share knowledge and promote AI innovation within the team. We are open to hiring candidates to work out of one of the following locations: Dallas, TX, USA
US, WA, Seattle
The Bad Actor Disincentives (BAD) team is responsible for removing the incentive for Bad Actors while accurately and fairly paying millions of third-party sellers along with disrupting the bad actor flywheel and change the economics of abuse within our store. The team works to ensure that bad actors cannot profit from using our services to abuse customers, selling partners and Amazon. While we obsess over customers, we specialize in obsessing over bad actors to identify their friction points and multiply them exponentially in ways that don’t impact good sellers. Our vision is to ensure Bad Actors do not receive a dollar from selling on Amazon and abusing our policies. If we successfully achieve our vision, then Bad Actors will stop committing misconduct on Amazon. This role requires outstanding technical skills, a deep understanding of machine learning approaches, and a passion for melding ML with great user experience/design. You must have a demonstrated ability for optimizing, developing, launching, and maintaining large-scale production systems. As a key member of the team, you will oversee all aspects of the software lifecycle: design, experimentation, implementation, and testing. You should be willing to dive deep when needed, move rapidly with a bias for action, and get things done. You should have an entrepreneurial spirit, love autonomy, know how to deliver, and long for the opportunity to build pioneering solutions to challenging problems. This role will demand resourcefulness and willingness to learn on both the technical and business side. The challenges we take on can involve a mix of large-scale distributed systems, big data technologies, machine learning science, and require a keen sense of customer obsession and long-term strategic thinking. Key job responsibilities You're a former engineer or scientist who can see the bigger picture. While your career is full of individual wins, it is now more fulfilling when your team is able to build, deliver, and impress. You enjoy leading and mentoring others, and want to work on projects that require innovative and creative thinking alongside deep technical problem solving. You challenge yourself and others to constantly come up with better solutions, and can deliver on a technical roadmap that serves our customers and the business optimally. You communicate clearly, and hold yourself and your team to a high bar. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon's Global Hiring Science team ensures we match the right people to the right roles, quickly, fairly, and with an amazing experience. To achieve this, we design, implement, and optimize hiring systems experienced by millions of candidates annually. We work in a data-rich, global environment solving complex problems with deep thought, large-sample research, and advanced quantitative methods to deliver practical solutions that make all aspects of hiring more fair, accurate, efficient, and enjoyable. Key job responsibilities We’re developing a new approach to hiring via a multi-year initiative to evolve how we define jobs and candidate qualifications, how we recommend and promote jobs to candidates, and how we help candidates find the roles in which they will be most successful, satisfied, and engaged. To accomplish this, we’ve created a specialized team of experienced industrial-organizational psychologists, applied scientists, engineers, and UX designers. We're looking for an experienced senior research science manager to lead a team of scientists working on this initiative who is equal parts researcher, consultant, and thought leader, with strong expertise in psychometrics, research methodology, and data analysis. In this role, you will collaborate with cross-functional teams to drive research, development, and implementation of innovative hiring technology, evaluation tools, approaches, and methods. The impact of your work will be global and applicable across all of Amazon’s businesses (e.g., AWS, Retail, Logistics, Kindle, and Business Development) and roles (e.g., hourly, technical, professional). A day in the life What you’ll do: • Manage the development and execution of large-scale, highly-visible global research, validation, and hiring optimization projects. • Solve complex, ambiguous measurement, legal defensibility, and experimental design challenges. • Lead the development and research of new content and approaches to assessment (e.g., high fidelity simulation, interactive item types, constructed response). • Apply the scientific method to answer novel research questions. • Influence executive project sponsors and stakeholders across the company. • Drive effective teamwork, communication, collaboration, and commitment across cross-functional groups with competing priorities. • Oversee complex statistical/quantitative analyses with large datasets. About the team We are a team of scientists, and this is an important part of our professional identities. We take our continuing education as well as our contributions to the continuing education of others seriously. To this end, we regularly look for opportunities to engage in reading groups with our peers, present at internal and external conferences, publish our work, and engage in other professional activities in support of our or others development. Learn more about being a scientist at Amazon: We embrace differences and are committed to furthering our culture of inclusion. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Seattle
Are you interested in working with top talent in Optimization, Operations Research and Supply Chain to help Amazon to efficiently match our Devices with worldwide customers? We have challenging problems and need your innovative solutions to make tremendous financial impacts! The Amazon Devices Science team is looking for a Research Scientist with background in Operations Research, Optimization, Supply Chain and/or Simulation to support science efforts to integrate across inventory management functionalities. Our team is responsible for science models (both deterministic and stochastic) that power world-wide inventory allocation for Amazon Devices business that includes Echo, Kindle, Fire Tablets, Amazon TVs, Amazon Fire TV sticks, Ring, and other smart home devices. We formulate and solve challenging large-scale financially-based optimization problems which ingest demand forecasts and produce optimal procurement, production, distribution, and inventory management plans. In addition, we also work closely with demand forecasting, material procurement, production planning, finance, and logistics teams to co-optimize the inventory management and supply chain for Amazon Devices given operational constraints. Key job responsibilities The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and ability to work in a fast-paced and ever-changing environment and a desire to help shape the overall business. Job responsibilities include: - Design and develop advanced mathematical, simulation, and optimization models and apply them to define strategic and tactical needs and drive appropriate business and technical solutions in the areas of inventory management and distribution, network flow, supply chain optimization, and demand planning - Apply mathematical optimization techniques (linear, quadratic, SOCP, robust, stochastic, dynamic, mixed-integer programming, network flows, nonlinear, nonconvex programming) and algorithms to design optimal or near optimal solution methodologies to be used by in-house decision support tools and software - Research, prototype and experiment with these models by using modeling languages such as Python; participate in the production level deployment - Create, enhance, and maintain technical documentation, and present to other Scientists, Product, and Engineering teams - Support project plans from a scientific perspective by managing product features, technical risks, milestones and launch plans - Influence organization's long-term roadmap and resourcing, and onboard new technologies onto the Science team's toolbox We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you passionate about solving unique customer-facing problem in the Amazon scale? Are you excited by developing and productizing machine learning, deep learning algorithms and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring Applied Scientist who has a solid background in applied Machine Learning and a proven record of solving customer-facing problems via scalable ML solutions, and is motivated to grow professionally as an ML scientist. Key job responsibilities Tackle ambiguous problems in Machine Learning and drive full life-cycle Machine Learning projects. Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. Run A/B experiments, gather data, and perform statistical tests. Establish scalable, efficient, automated processes for large-scale data mining, machine-learning model development, model validation and serving. Work closely with software engineers and product managers to assist in productizing your ML models. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | San Francisco, CA, USA | Santa Monica, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, MA, North Reading
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Research team at Amazon Robotics is seeking a passionate, hands-on Sr. Applied Scientist to help create the world’s first foundation model for a many-robot system. The focus of this position is how to predict the future state of our warehouses that feature a thousand or more mobile robots in constant motion making deliveries around the building. It includes designing, training, and deploying large-scale models using data from hundreds of warehouses under different operating conditions. This work spans from research such as alternative state representations of the many-robot system for training, to experimenting using simulation tools, to running large-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery - Proving/dis-proving strategies in offline data or in simulation * Production studies - Insights from production data or ad-hoc experimentation * Production implementation - Building key parts of deployed algorithms or models About the team You would join our multi-disciplinary science team that includes scientists with backgrounds in planning and scheduling, grasping and manipulation, machine learning, and operations research. We develop novel planning algorithms and machine learning methods and apply them to real-word robotic warehouses, including: - Planning and coordinating the paths of thousands of robots - Dynamic allocation and scheduling of tasks to thousands of robots - Learning how to adapt system behavior to varying operating conditions - Co-design of robotic logistics processes and the algorithms to optimize them Our team also serves as a hub to foster innovation and support scientists across Amazon Robotics. We also coordinate research engagements with academia, such as the Robotics section of the Amazon Research Awards. We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
US, WA, Bellevue
Inventory Planning and Control (IPC) is seeking an experienced senior data scientist to join its central science team. Our team owns the core decision models in the space of Buying, Placement, and Capacity Control. Our models decide when, where, and how much we should buy, flow, and hold inventories in our global fulfillment network to meet Amazon’s business goals and to make our customers happy. We do this for hundreds of millions of items and hundreds of product lines worth billions of dollars of world-wide for both our Retail and third-party seller business. Our systems are built entirely in-house, for which we constantly develop new technologies in automated inventory planning, prediction, optimization and simulation. Our systems operate at various scales, from real-time decision system that completes thousands of transactions per seconds, to large scale distributed system that optimizes the inventory decisions over millions of products simultaneously. IPC is also unique in that we are simultaneously developing the science and software of inventory optimization and solving some of the toughest computational/operational challenges in production. Our team members have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. Key job responsibilities Candidates will be responsible for developing causal, machine learning and data driven models to enhance the various inventory optimization engines that the team owns. The successful candidate should have solid hands-on experience in applying machine learning or causal inference models. They will also be responsible for conducting data driven analysis to facilitate strategic decisions. They require superior logical thinkers who are able to quickly approach large ambiguous problems and develop a practical plan to tackle. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving. They are able to measure and estimate risks, and constructively critique peer research. As a senior scientist, you will also help coach/mentor junior scientists in the team. A day in the life The IPC science team contains a large group of scientists with different technical expertise, who will help and collaborate with you on your projects. In this role, you will also work with our internal customers from the Retail, third-party seller and operations departments worldwide. You will understand their challenges and pain points, and help develop data driven solutions that improve how Amazon manages inventory in our global supply chain. You will work closely with the product managers, engineers and other scientists to turn science proposals into production implementation. About the team We are a team of scientists, product managers and engineers focusing on innovation. We promote experimentation and learn by building. We often tackle the hardest problem in the organization and work cross-functionally. We are at the center of developing inventory solutions to support the rapid growth of Amazon's store business. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the cutting-edge of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members. Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, visit We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Chicago, IL, USA | Seattle, WA, USA
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Books Advertising team owns the worldwide advertising business for books, including advertiser and shopper experiences. They develop long-term vision and drive improvements for category relevance, auction dynamics, and ad serving. Additionally, they drive advertiser engagement, represent advertisers' voice, and provide operational support for our programs. This means the team owns all book-specific experiences for Sponsored Products, Sponsored Brands, Sponsored Display, Lock Screen Advertising, the Ads Console, and the Public API. As an Senior Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ** Candidates can be based within proximity of NYC, Seattle, Toronto, Arlington County/Virginia (HQ2), or Santa Monica ** We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Santa Monica, CA, USA