Chukwudi Chukwudozie is seen looking into the camera, smiling while wearing a collared shirt and standing in front of some greenery
Chukwudi Chukwudozie, an applied scientist, works on the Softlines Discovery Science team.
Courtesy of Chukwudi Chukwudozie

From petroleum engineering to machine learning

How Chukwudi Chukwudozie’s path to Amazon was paved by a passion for problem-solving and growth.

Chukwudi Chukwudozie came to the United States in 2008 from his native Nigeria to pursue dual master’s degrees in petroleum engineering and applied mathematics at Louisiana State University. The trip was significant for several reasons.

“It was my first trip to America, and actually my first time on an airplane,” said Chukwudozie, who goes by “Chuks”. “So many big changes for a short amount of time.”

He didn’t sleep during either leg of his flight — which went from Abuja to Amsterdam to Memphis — staring out the window as night turned into day and soaking up every second. “When we landed in America, it felt like we were on a whole different planet,” he recalls. “I wish I could go back to that amazing feeling when I got to experience what I’d only seen in the movies until that point.”

The seeds of his journey into science were planted during his upbringing. Chukwudozie’s father, a building engineer, encouraged him and his five siblings to study math and science from an early age.

As a science student in Nigeria, you have two choices: engineering or medicine. I had no interest in medicine, but instead always knew I wanted to work with computation and use technology to solve equations.
Chukwudi Chukwudozie

“Our dad would sit down at the table with us and teach us mathematics, physics and chemistry,” he said. “He instilled in all of us an interest in science and engineering.”

Those early life lessons aligned well with his own interests.

“As a science student in Nigeria, you have two choices: engineering or medicine,” Chukwudozie continued. “I had no interest in medicine, but instead always knew I wanted to work with computation and use technology to solve equations.”

Initially, he followed in his father’s footsteps, enrolling as a civil-engineering major at the Federal University of Technology Minna in Nigeria. However, during his sophomore year, as he became more interested in Nigeria’s thriving oil and gas industry, he pivoted to chemical engineering.

“In Nigeria, most of what sustains us is from oil and gas, so I wanted to be the first chemical engineer in my family,” he said. “I was really interested in the downstream side of the petroleum industry. I’d see the flares from the refineries and wanted to understand how they worked. And I love chemistry.”

Related content
How a math-loving student travelled 7,000 miles to pursue a passion and wound up becoming an applied scientist.

After completing his PhD in petroleum engineering at LSU and a postdoctoral fellowship program at the Department of Civil Engineering and Engineering Mechanics at Columbia University, Chukwudozie shifted gears yet again.

“Machine learning was picking up steam, and I wanted to see how I could make a contribution to this emerging field through my background in applied math,” he said. “I never like to be idle. So after I finished my doctoral defense and had a few months until graduation, I stayed busy writing code and studying machine learning on my own out of sheer curiosity because I needed something to keep me thinking and learning.”

A few colleagues in the petroleum-engineering industry encouraged him to keep writing code, which he never published but ultimately shared with a professor at LSU for a research project. His students are using Chukwudozie’s code — which implements a finite-element solution of multiphysics fluid flow, heat, and solid deformation in underground formations — to run on high-performance computers.

Around that time, a recruiter contacted him about an applied-scientist opening at Amazon. He was intrigued by the opportunity.

“It seemed to me like Amazon was the only company hugely invested in machine learning to solve business problems,” Chukwudozie said. “I looked up the LinkedIn profiles of a few applied scientists at Amazon and quickly related to a few of them who, like me, do not have a traditional computer science background. I could see myself fitting into that environment.”

Related content
Sneha Rajana is an applied scientist at Amazon today, but she didn't start out that way. Learn how she made the switch, and the advice she has for others considering a similar change.

Though the shift from petroleum engineering to machine learning might seem like a major detour for him, Chukwudozie is quick to note that the two disciplines share the same fundamentals — mathematics.

“My graduate programs focused heavily on coding and solving problems through applied-math equations, essentially the foundation of machine learning,” he explained.

In June 2019, Chukwudozie joined the Buyer Risk Prevention (BRP) team at Amazon, which uses machine learning algorithms to help prevent fraud in Amazon stores. He has also collaborated with Amazon teams on both the buyer and seller sides in Europe and the United States.

He appreciates what he’s learned from his colleagues, who include PhDs spanning a variety of scientific disciplines — from biology and chemistry to geophysics and mechanical engineering.

“The BRP team has a large collection of applied scientists from a range of backgrounds,” he said. “Since I didn’t have any practical machine learning experience at the time, it was a great landing spot for me to build a foundation of knowledge. I did a lot of presenting, a lot of asking, and a lot of listening.”

Related content
Amazon Machine Learning Conference highlights use of machine learning across the company’s businesses and its increasing value to customers.

In 2020, Chukwudozie presented at the company’s annual, internal Amazon Machine Learning Conference (AMLC) and plans to do so again this year. He’s motivated by a passion to continue his learning journey and share his knowledge and story with scientists from similar backgrounds.

In December 2021, Chukwudozie took on a new challenge, this time with a role focused on improving search relevance for fashion items on the Amazon Store — from jackets to jeans to backpacks — based on time of year. Specifically, he’s working on a seasonal model to help customers find products that are in season at the time of their requests.

“Because if we present a customer with a winter item in the summer, for example, then there is a very low likelihood of them being satisfied with the item,” he explained. “But when we present a more relevant item, then we see more-satisfied customers.”

Building safe, seamless shopping experiences gives Chukwudozie a sense of fulfillment.

“Seeing the impact of my work on customers — from preventing fraud to helping shoppers find the best, most relevant products they’re looking for — that brings me huge joy,” he said. “One of the things that attracted me to Amazon is the fact that the problems we help solve have a global and almost immediate impact. You get to see the results of your job in real time.”

Amazon has hundreds of openings around the world for applied scientists, data scientists, research scientists and more.

Research areas

Related content

US, VA, Herndon
Do you love decomposing problems to develop machine learning (ML) products that impact millions of people around the world? Would you enjoy identifying, defining, and building ML software solutions that revolutionize how businesses operate? The Global Practice Organization in Professional Services at Amazon Web Services (AWS) is looking for a Software Development Engineer II to build, deliver, and maintain complex ML products that delight our customers and raise our performance bar. You’ll design fault-tolerant systems that run at massive scale as we continue to innovate best-in-class services and applications in the AWS Cloud. Key job responsibilities Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also: - Solve complex technical problems, often ones not solved before, at every layer of the stack. - Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security. - Build high-quality, highly available, always-on products. - Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: - Build high-impact ML solutions to deliver to our large customer base. - Participate in design discussions, code review, and communicate with internal and external stakeholders. - Work cross-functionally to help drive business solutions with your technical input. - Work in a startup-like development environment, where you’re always working on the most important stuff. About the team The Global Practice Organization for Analytics is a team inside the AWS Professional Services Organization. Our mission in the Global Practice Organization is to be at the forefront of defining machine learning domain strategy, and ensuring the scale of Professional Services' delivery. We define strategic initiatives, provide domain expertise, and oversee the development of high-quality, repeatable offerings that accelerate customer outcomes. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 85,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life harmony. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here. We are a customer-obsessed organization—leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. As such, this is a customer facing role in a hybrid delivery model. Project engagements include remote delivery methods and onsite engagement that will include travel to customer locations as needed. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future. This is a customer-facing role and you will be required to travel to client locations and deliver professional services as needed. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Austin, TX, USA | Boston, MA, USA | Chicago, IL, USA | Herndon, VA, USA | Minneapolis, MN, USA | New York, NC, USA | San Diego, CA, USA | San Francisco, CA, USA | Seattle, WA, USA
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Seattle, WA, USA | Westborough, MA, USA
CA, BC, Vancouver
Amazon Web Services (AWS) is building a world-class marketing organization that drives awareness and customer engagement with the goal of educating developers, IT and line-of-business professionals, startups, partners, and executive decision makers about AWS services and solutions, their benefits, and differentiation. As the central data and science organization in AWS Marketing, the Data: Science and Engineering (D:SE) team builds measurement products, AI/ML models for targeting, and self-service insights capabilities for AWS Marketing to drive better measurement and personalization, improve data access and analytical self-service, and empower strategic data-driven decisions. We work globally as a central team and establish standards, benchmarks, and best practices for use throughout AWS Marketing. We are looking for a Principal Data Scientist with deep expertise in scaling measurement science, content ranking and rapid experimentation at scale, with strong interest in building scalable solutions in partnership with our engineering organization. You will lead strategic measurement science initiatives across AWS Marketing & Sales ranging anywhere between recommender engines, scaling experimentation and measurement science, real-time inference, and cross-channel orchestration. You are an hands-on innovator who can contribute to advancing Marketing measurement technology in a B2B environment, and push the limits on what’s scientifically possible with a razor sharp focus on measurable customer and business impact. You will work with recognized B2B Marketing Science and AI/ML experts to develop large-scale, high-performing measurement science models and AI/ML capabilities. We are at a pivotal moment in our organization where AI/ML and measurement velocity has reached an unseen momentum, and we need to scale fast in order to maintain it. Your work will be a key input into a few of our key business goals. You will advance the state of the art in measurement at scale. We are open to hiring candidates to work out of one of the following locations: Vancouver, BC, CAN
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities • Develop automated laboratory workflows. • Perform data QC, document results, and communicate to stakeholders. • Maintain updated understanding and knowledge of methods. • Identify and escalate equipment malfunctions; troubleshoot common errors. • Participate in the updating of protocols and database to accurately reflect the current practices. • Maintain equipment and instruments in good operating condition • Adapt to unexpected schedule changes and respond to emergency situations, as needed. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon’s mission is to be the most customer centric company in the world. The Workforce Staffing (WFS) organization is on the front line of that mission by hiring the hourly fulfillment associates who make that mission a reality. To drive the necessary growth and continued scale of Amazon’s associate needs within a constrained employment environment, Amazon has created the Workforce Intelligence (WFI) team. This team will (re)invent how Amazon attracts, communicates with, and ultimately hires its hourly associates. This team owns multi-layered research and program implementation to drive deep learning, process improvements, and strategic recommendations to global leadership. Are you passionate about data? Do you enjoy questioning the status quo? Do complex and difficult challenges excite you? If yes, this may be the team for you. The Data Scientist will be responsible for creating cutting edge algorithms, predictive and prescriptive models as well as required data models to facilitate WFS at-scale warehouse associate hiring. This role acts as an internal consultant to the marketing, biz ops and candidate experience teams covering responsibilities such as at-scale hiring process improvement, analyzing large scale candidate/associate data and being strategic to providing best candidate hiring experience to WFS warehouse associate candidates. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a Applied Scientist to focus on large vision and manipulation machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes using machine learning to drive hardware movement. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. About the team This team invents and runs robots focused on grasping and packing items. These are typically 6-dof style robotic arms. Our work ranges from the long-term-research on basic science to deploying/supporting large production fleets handling billions of items per year. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon launched the Generative AI (GenAI) Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem at Amazon scale? Are you excited by developing and productionizing machine learning, deep learning algorithms and leveraging tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diverse set of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Virtual Try On (VTO) at Amazon Fashion & Fitness is looking for an exceptional Applied Scientist to join us to build our next generation virtual try on experience. Our goal is to help customers evaluate how products will fit and flatter their unique self before they ship, transforming customers' shopping into a personalized journey of inspiration, discovery, and evaluation. In this role, you will be responsible for building scalable computer vision and machine learning (CVML) models, and automating their application and expansion to power customer-facing features. Key job responsibilities - Tackle ambiguous problems in Computer Vision and Machine Learning, and drive full life-cycle of CV/ML projects. - Build Computer Vision, Machine Learning and Generative AI models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Investigate and solve exciting and difficult challenges in Image Generation, 3D Computer Vision, Generative AI, Image Understanding and Deep Learning. - Run A/B experiments, gather data, and perform statistical tests. - Lead development and productionalization of CV, ML, and Gen AI models and algorithms by working across teams. Deliver end to end. - Act as a mentor to other scientists on the team. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
At Amazon Fashion, we are obsessed with making Amazon Fashion the most loved fashion destinations globally. We're searching for Computer Vision pioneers who are passionate about technology, innovation, and customer experience, and who are enthusiastic about making a lasting impact on the industry. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey and change the world of eCommerce forever Key job responsibilities As a Applied Scientist, you will be at the forefront to define, own and drive the science that span multiple machine learning models and enabling multiple product/engineering teams and organizations. You will partner with product management and technical leadership to identify opportunities to innovate customer facing experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but more importantly influence strategy and outcomes across different Amazon organizations such as Search, Personalization and more. This role is inherently cross-functional and requires a strong ability to communicate, influence and earn the trust of software engineers, technical and business leadership. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA