Chukwudi Chukwudozie is seen looking into the camera, smiling while wearing a collared shirt and standing in front of some greenery
Chukwudi Chukwudozie, an applied scientist, works on the Softlines Discovery Science team.
Courtesy of Chukwudi Chukwudozie

From petroleum engineering to machine learning

How Chukwudi Chukwudozie’s path to Amazon was paved by a passion for problem-solving and growth.

Chukwudi Chukwudozie came to the United States in 2008 from his native Nigeria to pursue dual master’s degrees in petroleum engineering and applied mathematics at Louisiana State University. The trip was significant for several reasons.

“It was my first trip to America, and actually my first time on an airplane,” said Chukwudozie, who goes by “Chuks”. “So many big changes for a short amount of time.”

He didn’t sleep during either leg of his flight — which went from Abuja to Amsterdam to Memphis — staring out the window as night turned into day and soaking up every second. “When we landed in America, it felt like we were on a whole different planet,” he recalls. “I wish I could go back to that amazing feeling when I got to experience what I’d only seen in the movies until that point.”

The seeds of his journey into science were planted during his upbringing. Chukwudozie’s father, a building engineer, encouraged him and his five siblings to study math and science from an early age.

As a science student in Nigeria, you have two choices: engineering or medicine. I had no interest in medicine, but instead always knew I wanted to work with computation and use technology to solve equations.
Chukwudi Chukwudozie

“Our dad would sit down at the table with us and teach us mathematics, physics and chemistry,” he said. “He instilled in all of us an interest in science and engineering.”

Those early life lessons aligned well with his own interests.

“As a science student in Nigeria, you have two choices: engineering or medicine,” Chukwudozie continued. “I had no interest in medicine, but instead always knew I wanted to work with computation and use technology to solve equations.”

Initially, he followed in his father’s footsteps, enrolling as a civil-engineering major at the Federal University of Technology Minna in Nigeria. However, during his sophomore year, as he became more interested in Nigeria’s thriving oil and gas industry, he pivoted to chemical engineering.

“In Nigeria, most of what sustains us is from oil and gas, so I wanted to be the first chemical engineer in my family,” he said. “I was really interested in the downstream side of the petroleum industry. I’d see the flares from the refineries and wanted to understand how they worked. And I love chemistry.”

Related content
How a math-loving student travelled 7,000 miles to pursue a passion and wound up becoming an applied scientist.

After completing his PhD in petroleum engineering at LSU and a postdoctoral fellowship program at the Department of Civil Engineering and Engineering Mechanics at Columbia University, Chukwudozie shifted gears yet again.

“Machine learning was picking up steam, and I wanted to see how I could make a contribution to this emerging field through my background in applied math,” he said. “I never like to be idle. So after I finished my doctoral defense and had a few months until graduation, I stayed busy writing code and studying machine learning on my own out of sheer curiosity because I needed something to keep me thinking and learning.”

A few colleagues in the petroleum-engineering industry encouraged him to keep writing code, which he never published but ultimately shared with a professor at LSU for a research project. His students are using Chukwudozie’s code — which implements a finite-element solution of multiphysics fluid flow, heat, and solid deformation in underground formations — to run on high-performance computers.

Around that time, a recruiter contacted him about an applied-scientist opening at Amazon. He was intrigued by the opportunity.

“It seemed to me like Amazon was the only company hugely invested in machine learning to solve business problems,” Chukwudozie said. “I looked up the LinkedIn profiles of a few applied scientists at Amazon and quickly related to a few of them who, like me, do not have a traditional computer science background. I could see myself fitting into that environment.”

Related content
Sneha Rajana is an applied scientist at Amazon today, but she didn't start out that way. Learn how she made the switch, and the advice she has for others considering a similar change.

Though the shift from petroleum engineering to machine learning might seem like a major detour for him, Chukwudozie is quick to note that the two disciplines share the same fundamentals — mathematics.

“My graduate programs focused heavily on coding and solving problems through applied-math equations, essentially the foundation of machine learning,” he explained.

In June 2019, Chukwudozie joined the Buyer Risk Prevention (BRP) team at Amazon, which uses machine learning algorithms to help prevent fraud in Amazon stores. He has also collaborated with Amazon teams on both the buyer and seller sides in Europe and the United States.

He appreciates what he’s learned from his colleagues, who include PhDs spanning a variety of scientific disciplines — from biology and chemistry to geophysics and mechanical engineering.

“The BRP team has a large collection of applied scientists from a range of backgrounds,” he said. “Since I didn’t have any practical machine learning experience at the time, it was a great landing spot for me to build a foundation of knowledge. I did a lot of presenting, a lot of asking, and a lot of listening.”

Related content
Amazon Machine Learning Conference highlights use of machine learning across the company’s businesses and its increasing value to customers.

In 2020, Chukwudozie presented at the company’s annual, internal Amazon Machine Learning Conference (AMLC) and plans to do so again this year. He’s motivated by a passion to continue his learning journey and share his knowledge and story with scientists from similar backgrounds.

In December 2021, Chukwudozie took on a new challenge, this time with a role focused on improving search relevance for fashion items on the Amazon Store — from jackets to jeans to backpacks — based on time of year. Specifically, he’s working on a seasonal model to help customers find products that are in season at the time of their requests.

“Because if we present a customer with a winter item in the summer, for example, then there is a very low likelihood of them being satisfied with the item,” he explained. “But when we present a more relevant item, then we see more-satisfied customers.”

Building safe, seamless shopping experiences gives Chukwudozie a sense of fulfillment.

“Seeing the impact of my work on customers — from preventing fraud to helping shoppers find the best, most relevant products they’re looking for — that brings me huge joy,” he said. “One of the things that attracted me to Amazon is the fact that the problems we help solve have a global and almost immediate impact. You get to see the results of your job in real time.”

Amazon has hundreds of openings around the world for applied scientists, data scientists, research scientists and more.

Research areas

Related content

US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Some knowledge of econometrics, as well as basic familiarity with Stata or R is necessary, and experience with SQL, Hadoop, Spark and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Boston
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics, a wholly owned subsidiary of Amazon.com, empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. AR is seeking uniquely talented and motivated data scientists to join our Global Services and Support (GSS) Tools Team. GSS Tools focuses on improving the supportability of the Amazon Robotics solutions through automation, with the explicit goal of simplifying issue resolution for our global network of Fulfillment Centers. The candidate will work closely with software engineers, Fulfillment Center operation teams, system engineers, and product managers in the development, qualification, documentation, and deployment of new - as well as enhancements to existing - operational models, metrics, and data driven dashboards. As such, this individual must possess the technical aptitude to pick-up new BI tools and programming languages to interface with different data access layers for metric computation, data mining, and data modeling. This role is a 6 month co-op to join AR full time (40 hours/week) from July – December 2023. The Co-op will be responsible for: Diving deep into operational data and metrics to identify and communicate trends used to drive development of new tools for supportability Translating operational metrics into functional requirements for BI-tools, models, and reporting Collaborating with cross functional teams to automate AR problem detection and diagnostics
US, WA, Virtual Location - Washington
Inventory Planning and Control Laboratory (IPC Lab) runs in-production randomized controlled trials (RCTs) on Amazon’s supply chain. IPC Lab RCTs estimate the impact of supply chain policies that include how much inventory to buy, where to place inventory after it arrives in our network, and which fulfillment centers we should fulfill an order from. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of causal inference and proficiency in python or R is esssential. Experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.