Andrew Borthwick
Andrew Borthwick, an Amazon principal scientist, shares his insights related to helping organize a company-wide challenge for one of the company's internal science events, and on how, despite the company's decentralized approach to science and engineering, the company still fosters collaboration and a sense of community among scientists.
Credit: Andrew Borthwick

Fostering a culture of innovation

An Amazon principal scientist describes how an internal challenge has fostered greater collaboration and a sense of community among the company’s scientists.

Editor’s Note: Andrew Borthwick is a principal scientist at Amazon; he leads a team focusing on challenges of automatic machine learning over Amazon’s expansive product catalog. In this article, he describes his experience in helping organize a Challenge within the company’s annual, internal machine-learning conference, which brings together thousands of scientists and engineers from across the company to showcase their work, network with peers, and raise the quality of science at the company.

More than 4,000 scientists and engineers attended last fall’s virtual, online event, with the opportunity to view keynote, oral paper, and poster presentations, along with workshops, training sessions, and other activities.

In this article, Borthwick shares his experience in helping organize one of the conference’s Challenge events, and provides insight into how, despite the company’s highly decentralized approach to science and engineering, the company fosters collaboration and a sense of community among scientists.

There is a huge amount of innovation in machine learning at Amazon. So much, in fact, that it can be difficult to keep track of all of the cool ideas percolating among teams. To help Amazonians push the state of the art forward, we have an annual internal Amazon Machine Learning Conference (AMLC). This conference is structured similarly to well-known academic conferences, with a process of papers being peer reviewed, and a high bar for acceptance.

I’ve been working in machine learning at Amazon for six years now and have served as a reviewer and meta-reviewer of papers for AMLC many times. Although reviewing papers has been a stimulating opportunity in that it has allowed me to see the great diversity of machine learning research here at Amazon, I sometimes found myself stymied when deciding on the merits of an idea.

There is a huge amount of innovation in machine learning at Amazon. So much, in fact, that it can be difficult to keep track of all of the cool ideas percolating among teams.
Andrew Borthwick

Amazon is well known for a culture of “two pizza teams”. We try to reduce Amazon’s very large scale into chunks of work that can be attacked by a team of people small enough that they can be fed with two pizzas (in practice these teams are typically five to eight in size, so the pizzas should definitely be large). Each team can then be customer obsessed in focusing on the opportunity they are targeting. In machine learning, this has a major advantage in allowing us to be agile — we don’t spend too much time coordinating with other teams — so teams are free to experiment with approaches. The downside to this approach is that it can lead to a duplication of effort, and an inability to identify the best scientific approach.

I have frequently reviewed papers that presented data where some team had greatly increased the accuracy of their machine learning algorithm relative to their previous approach, and had  delivered significant customer value.  This sounds good, but one of the Amazon Leadership Principles is that we should “Insist on the Highest Standards”. I would ask myself, “Yes, what this paper is describing is great, but is this the best that could be done here?”

The problem was most acute when you had separate two-pizza teams working on very similar challenges. One of my areas of expertise is in linking records in databases, which led to my work on AWS Lake Formation FindMatches. We’re doing some really interesting science in this area:  one team is working on finding duplicate items in Amazon’s product catalog while another is working on identifying sets of products that are variants of one another (when buying Amazon Essentials Crewneck t-shirts, for instance, you will see all the different colors and sizes on the same page). These problems are similar in that a customer might want to see if two products “match”, but in one case they are looking for an “exact match”, while in the other they want to find “products that match if you ignore color and size differences”.

We had a similar issue with machine learning classification problems.

One two-pizza team was working on the problem of classifying Amazon products as to which customer-facing product type they belong to (such as “women’s sneakers”). Meanwhile another team was classifying items into categories that sometimes have a special treatment for sales tax purposes (for instance “alcoholic beverage” or “children’s clothing” or “food” or “medicine”). Amazon Music has a similar problem with classifying music tracks as to genre (is it “holiday music” or “instrumental jazz” or “string quartet”?).

Each of these teams was working on classifying items into a fairly large, but fixed number of classes, a problem known in machine learning as “k-way classification”. The items being classified (either products or music tracks) had many different attributes which were of different data types such as text (product_description, music_track_title), numeric (shipping_weight), categorical (color, size), and image (the picture of the product or the album cover), so we said that this was “k-way classification of multimodal tabular data”. Finally, each of these teams had a substantial number of labeled records where an Amazon employee had determined the correct category. We dubbed this challenge as “supervised k-way classification of multimodal tabular data” —  a very important but understudied problem in ML.

The problem came when each of these teams submitted a paper describing their results to the Amazon Machine Learning Conference.  The questions I had to resolve as a reviewer were: “Who has the better algorithm”? and “This other two-pizza team is working on a very similar problem. What would happen if they used the other team’s algorithm on their data”?

AMLC Panel Discussion
The MultiModal Tabular Data Challenge Workshop included a question-and-answer session with competition finalists and scientists from the competition's organizing committee.

These kinds of questions led some of my machine learning colleagues and me to organize an internal “Grand Challenge in MultiModal Tabular Data”. Organizing a competition like this is a big task, but there are similar examples in the global ML community. Our first project was to gather and organize k-way classification and matching datasets from two-pizza teams across Amazon.

Next we had a kick-off meeting where we announced the competition and the prizes ($1000 in Amazon gift cards for the best average performance on the matching tasks and the best average performance on the classification tasks).

The contest itself lasted for four months, with more than 50 teams submitting results, and culminated with a workshop at AMLC last October. There the top three teams in the Matching and K-Way Classification challenges described their systems.

In reflecting on the Challenge, we found a number of positive effects:

  • The competition was a fun activity, with more than 50 teams and over 100 participants. Many participants enthusiastically made dozens of attempts at the different competitions.
  • Because a reverence for rank and titles is not one of Amazon’s Leadership Principles, the Challenge placed participants of all levels, locations, and job titles on equal footing.
  • One of the key challenges for the organizing committee was the need to standardize all of the data for the different tasks according to the same conventions (for instance, we made all of the data available with similar schemas in two popular formats —.csv and .parquet). This data is now available for future Amazon research projects, and thus future papers submitted to the conference.  
  • Two of the top six solutions made heavy use of AWS’ new open source Automated Machine Learning toolkit, AutoGluon, including one of the Grand Prize winners. Ideas from these Challenge entrants also made their way back into the AutoGluon toolkit, particularly around improving AutoGluon’s ability to handle textual columns in a tabular dataset.
  • Researchers benefited because these datasets are more complex and representative of real-world problems than most datasets in the public domain. In particular, it is difficult for researchers to get their hands on datasets where the correct decision hinges on signals derived from a combination of complex text, image, numeric, and categorical attributes.
  • More generally, the Challenge has helped to encourage closer teamwork among  different two-pizza teams working on similar problems. I’ve been in a number of meetings with teams working on a task that was in the Challenge or on problems that were similar to one of those tasks, where we have discussed ideas for leveraging the learnings from the winning teams.
  • Finally, for me, the Challenge led me to join the Amazon Selection and Catalog Systems team, which was one of the main contributors of data to the project. One of the great things about working here is the opportunity to switch to a team that you are passionate about.
View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA
ES, M, Madrid
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Madrid, ESP | Madrid, M, ESP
US, TX, Austin
The role is available Arlington, Virginia (may consider New York, NY, Los Angeles, CA, or Toronto, Canada). Calling all inventors to work on exciting new opportunities in Sponsored Products. Amazon is building a world class advertising business and defining and delivering a collection of self-service performance advertising products that drive discovery and sales of merchandise. Our products are strategically important to our Retail and Marketplace businesses, driving long-term growth. Sponsored Products (SP) helps merchants, retail vendors, and brand owners grows incremental sales of their products sold on Amazon through native advertising. SP achieves this by using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. We are a highly motivated, collaborative and fun-loving group with an entrepreneurial spirit and bias for action. You will join a newly-founded team with a broad mandate to experiment and innovate, which gives us the flexibility to explore and apply scientific techniques to novel product problems. You will have the satisfaction of seeing your work improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact. More importantly, you will have the opportunity to broaden your technical skills, work with Generative AI, and be a science leader in an environment that thrives on creativity, experimentation, and product innovation. We are open to hiring candidates to work out of one of the following locations: Austin, TX, USA
US, CA, San Diego
The Private Brands team is looking for an Applied Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights. We are an interdisciplinary team of Scientists, Engineers, and Economists and primary focus on building optimization and machine learning solutions in supply chain domain with specific focus on Amazon private brand products. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in predictive and machine learning models and working with distributed systems. Academic and/or practical background in Machine Learning are particularly relevant for this position. Familiarity and experience in applying Operations Research techniques to supply chain problems is a plus. To know more about Amazon science, Please visit https://www.amazon.science We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | Seattle, WA, USA
LU, Luxembourg
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
GB, London
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis Basic Qualifications -Masters in Computer Science, Machine Learning, Robotics or equivalent with a focus on Computer Vision. -2+ years of experience of building machine learning models for business application -Broad knowledge of fundamentals and state of the art in computer vision and machine learning -Strong coding skills in two or more programming languages such as Python or C/C++ -Knowledge of fundamentals in optimization, supervised and reinforcement learning -Excellent problem-solving ability Preferred Qualifications -PhD and 4+ years of industry or academic applied research experience applying Computer Vision techniques and developing Computer vision algorithms -Depth and breadth in state-of-the-art computer vision and machine learning technologies and experience designing and building computer vision solutions -Industry experience in sensor systems and the development of production computer vision and machine learning applications built to use them -Experience developing software interfacing to AWS services -Excellent written and verbal communication skills with the ability to present complex technical information in a clear and concise manner to a variety of audiences -Ability to work on a diverse team or with a diverse range of coworkers -Experience in publishing at major Computer Vision, ML or Robotics conferences or Journals (CVPR, ICCV, ECCV, NeurIPS, ICML, IJCV, ICRA, IROS, RSS,...) We are open to hiring candidates to work out of one of the following locations: London, GBR