Search results

18,482 results found
  • Mari Ostendorf
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    In September 2016, Amazon introduced a new problem in conversational Al, the Alexa Prize, which challenged student teams to build a socialbot that could converse with Alexa on a wide range of topics. The socialbot differs from task-oriented dialog systems that address explicit user goals associated with a constrained domain, and also differs from chatbot systems that only handle social chitchat. The socialbot
  • Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    Building conversational systems that enable natural language interactions with machines has been attractive to mankind since the early days of computing, as exemplified by earlier text-based systems such as ELIZA [Weizenbaum, 1966]. Previous work on conversational systems generally falls into two categories, task-oriented and socialbots. Task-oriented systems aim to help users accomplish a specific task
  • University of California, Davis
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    Gunrock is a social bot designed to engage users in open domain conversations. We improved our bot iteratively using large scale user interaction data to be more capable and human-like. Our system engaged in over 40,000 conversations during the semi-finals period of the 2018 Alexa Prize. We developed a context-aware hierarchical dialog manager to handle a wide variety of user behaviors, such as topic switching
  • Czech Technical University in Prague
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    This paper presents the second version of the dialogue system named Alquist competing in Amazon Alexa Prize 2018. We introduce a system leveraging ontology based topic structure called topic nodes. Each of the nodes consists of several sub-dialogues, and each sub-dialogue has its own LSTM-based model for dialogue management. The sub-dialogues can be triggered according to the topic hierarchy or a user intent
  • Czech Technical University in Prague
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    We describe our 2018 Alexa prize system (called ‘Alana’) which consists of an ensemble of bots, combining rule-based and machine learning systems. This paper reports on the version of the system developed and evaluated in the semifinals of the 2018 competition (i.e. up to 15 August 2018), but not on subsequent enhancements. The main advances over our 2017 Alana system are: (1) a deeper Natural Language
  • Brigham Young University
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    We present BYU-EVE, an open domain dialogue architecture that combines the strengths of hand-crafted rules, deep learning, and structured knowledge graph traversal in order to create satisfying user experiences. Rather than viewing dialogue as a strict mapping between input and output texts, EVE treats conversations as a collaborative process in which two jointly coordinating agents chart a trajectory through
  • Emory University
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    We describe IrisBot, a conversational agent that aims to help a customer be informed about the world around them, while being entertained and engaged. Our bot attempts to incorporate real-time search, informed advice, and latest news recommendation into a coherent conversation. IrisBot can already track information on the latest topics and opinions from News, Sports, and Entertainment and some specialized
  • Carnegie Mellon University
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    This paper describes the Tartan conversational agent built for the 2018 Alexa Prize Competition. Tartan is a non-goal-oriented socialbot focused around providing users with an engaging and fluent casual conversation. Tartan’s key features include an emphasis on structured conversation based on flexible finite-state models and an approach focused on understanding and using conversational acts. To provide
  • Joo-Kyung Kim, Young-Bum Kim
    Interspeech 2018
    2018
    In domain classification for spoken dialog systems, correct detection of out-of-domain (OOD) utterances is crucial because it reduces confusion and unnecessary interaction costs between users and the systems. Previous work usually utilizes OOD detectors that are trained separately from in-domain (IND) classifiers, and confidence thresholding for OOD detection given target evaluation scores. In this paper
  • Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    In this paper we present Fantom, a social chatbot competing in the Amazon Alexa Prize 2018. The system uses a dialog graph for retrieving an approximation of the current dialog context in order to find suitable response candidates in this context. The graph is gradually built using user utterances from actual interactions, and system responses suggested by crowd workers. To this end, we developed an automatic
  • University of California, Santa Cruz
    Alexa Prize SocialBot Grand Challenge 2 Proceedings
    2018
    One of the most interesting aspects of the Amazon Alexa Prize competition is that the framing of the competition requires the development of new computational models of dialogue and its structure. Traditional computational models of dialogueare of two types: (1) task-oriented dialogue, supported by AI planning models,or simplified planning models consisting of frames with slots to be filled; or (2)search-oriented
  • Javier Latorre, Jakub Lachowicz, Jaime Lorenzo Trueba, Tom Merritt, Thomas Drugman, Srikanth Ronanki, Viacheslav Klimkov
    ICASSP 2019
    2018
    Recent speech synthesis systems based on sampling from autoregressive neural networks models can generate speech almost undistinguishable from human recordings. However, these models require large amounts of data. This paper shows that the lack of data from one speaker can be compensated with data from other speakers. The naturalness of Tacotron2-like models trained on a blend of 5k utterances from 7 speakers
  • Nam Khanh Tran, Weiwei Cheng
    NAACL 2018
    2018
    Tree-structured LSTMs have shown advantages in learning semantic representations by exploiting syntactic information. Most existing methods model tree structures by bottomup combinations of constituent nodes using the same shared compositional function and often making use of input word information only. The inability to capture the richness of compositionality makes these models lack expressive power.
  • Managing risk is important to any E-commerce merchant. Various machine learning (ML) models combined with a rule set as the decision layer is a common practice to manage the risks. Unlike the ML models that can be automatically refreshed periodically based on new risk patterns, rules are generally static and rely on manual updates. To tackle that, this paper presents a data-driven and automated rule optimization
  • Ye Tian, Ioannis Douratsos, Isabel Groves
    INLG 2018
    2018
    The current most popular method for automatic Natural Language Generation (NLG) evaluation is comparing generated text with human-written reference sentences using a metrics system, which has drawbacks around reliability and scalability. We draw inspiration from second language (L2) assessment and extract a set of linguistic features to predict human judgments of sentence naturalness. Our experiment using
  • Zeynab Raeesy, Kellen Gillespie, Chengyuan Ma, Thomas Drugman, Jiacheng Gu, Roland Maas, Ariya Rastrow, Björn Hoffmeister
    SLT 2018
    2018
    This article presents a whisper speech detector in the far-field domain. The proposed system consists of a long short-term memory (LSTM) neural network trained on log-filterbank energy (LFBE) acoustic features. This model is trained and evaluated on recordings of human interactions with voice-controlled, far-field devices in whisper and normal phonation modes. We compare multiple inference approaches for
  • KDD 2018 Workshop on Mining and Learning from Time Series
    2018
    The state of the art in probabilistic demand forecasting [40] minimizes Quantile Loss to predict the future demand quantiles for different horizons. However, since quantiles aren’t additive, in order to predict the total demand for any wider future interval all required intervals are usually appended to the target vector during model training. The separate optimization of these overlapping intervals can
  • Frederic Godin, Anjishnu Kumar, Arpit Mittal
    NAACL 2019, NeurIPS 2018
    2018
    In this paper, we investigate the challenges of using reinforcement learning agents for question-answering over knowledge graphs for real-world applications. We examine the performance metrics used by state-of-the-art systems and determine that they are inadequate for such settings. More specifically, they do not evaluate the systems correctly for situations when there is no answer available and thus agents
  • Kurt Cutajar, Mark Pullin, Andreas Damianou, Javier González, Neil Lawrence
    NeurIPS 2018
    2018
    Multi-fidelity methods are prominently used when cheaply-obtained, but possibly biased and noisy, observations must be effectively combined with limited or expensive true data in order to construct reliable models. This arises in both fundamental machine learning procedures such as Bayesian optimization, as well as more practical science and engineering applications. In this paper we develop a novel multi-fidelity
  • Julian Salazar, Davis Liang, Zhiheng Huang, Zachary Lipton
    NeurIPS 2018
    2018
    Deep neural networks are often brittle to superficial perturbations of their inputs; models that perform well offline on held-out data can still break under small amounts of naturally-occurring or adversarial shifts. We consider invariant representation learning (IRL), first proposed in the domain of speech recognition, as a simple, effective, and general extension to data augmentation. Rather than only
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
MX, DIF, Mexico City
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Software Development Center in Sao Paulo. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning and big data, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise senior leadership, both tech and non-tech. - Make technical trade-offs between short-term needs and long-term goals.