blueswarm image.png
Swarm robotics involves scores of individual mobile robots that mimic the collective behavior demonstrated by animals. Certain robots, like the Bluebot pictured here, perform some of the same behaviors as a school of fish, such as aggregation, dispersion, and searching.
Courtesy of Radhika Nagpal, Harvard University

Schooling robots to behave like fish

Radhika Nagpal has created robots that can build towers without anyone in charge. Now she’s turned her focus to fulfillment center robots.

When Radhika Nagpal was starting graduate school in 1994, she and her future husband went snorkeling in the Caribbean. Nagpal, who grew up in a landlocked region of India, had never swum in the ocean before. It blew her away.

“The reef was super healthy and colorful, like being in a National Geographic television show,” she recalled. “As soon as I put my face in the water, this whole swarm of fish came towards me and then swerved to the right.”

Meet the Blueswarm
Blueswarm comprises seven identical miniature Bluebots that combine autonomous 3D multi-fin locomotion with 3D camera-based visual perception.

The fish fascinated her. As she watched, large schools of fish would suddenly stop or switch direction as if they were guided by a single mind. A series of questions occurred to her. How did they communicate with one another? What rules — think of them as algorithms — produced such complex group behaviors? What environmental prompts triggered their actions? And most importantly, what made collectives so much smarter and more successful than their individual members?

Radhika Nagpal is a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar
Radhika Nagpal is a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar.

Since then, Nagpal, a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar, has gone on to build swarming robots. Swarm robotics involves scores of individual mobile robots that mimic the collective behavior demonstrated by animals, e.g. how flocks of birds or schools of fish move together to achieve some end. The robots act as if they, too, were guided by a single mind, or, more precisely, a single computer. Yet they are not.

Instead, they follow a relatively simple set of behavioral rules. Without any external orders or directions, Nagpal’s swarms organize themselves to carry out surprisingly complex tasks, like spontaneously synchronizing their behavior, creating patterns, and even building a tower.

More recently, her lab developed swimming robots that performed some of the same behaviors as a school of fish, such as aggregation, dispersion, and searching. All without a leader.

Nagpal’s work demonstrates both how far we have come in creating self-organizing robot swarms that can perform tasks — and how far we still must go to emulate the complex tapestries woven by nature. It is a gap that Nagpal hopes to close by uncovering the secrets of swarm intelligence to make swarm robots far more useful.

Amorphous computing

The Caribbean fish sparked Nagpal’s imagination because she was already interested in distributed computing, where multiple computers collaborate to solve problems or transfer information without any single computer running the show. At MIT, where she had begun her PhD program, she was drawn to an offshoot of the field called amorphous computing. It investigates how limited, unreliable individuals — from cells to ants to fish — organize themselves to perform often complex tasks consistently without any hierarchies.

Amorphous computing was “hardware agnostic.” This meant that it sought rules that guided this behavior in both living organisms and computer systems. It asked, for example, how identical cells in an embryo form all the organs of an animal, how ants find the most direct route to food, or how fish coordinate their movements. By studying nature, these computer scientists hoped to build computer networks that operated on the same principles.

I got excited about how nature makes these complicated, distributed, mobile networks. Those multi-robot systems became a new direction of my research
Radhika Nagpal

After completing her doctoral work on self-folding materials inspired by how cells form tissues, Nagpal began teaching at Harvard. While there, she was visited by her friend James McLurkin, a pioneer in swarm robotics at MIT and iRobot.

“James is the one that got me into robot swarms by introducing me to all the things that ant and termite colonies do,” Nagpal said. “I got excited about how nature makes these complicated, distributed, mobile networks. James was developing that used similar principles to move around and work together. Those multi-robot systems became a new direction of my research.”

She was particularly taken by Namibian termites, which build large-scale nest mounds with multiple chambers and complex ventilation systems, often as high as 8 feet tall.

“As far as we know, there isn’t a blueprint or an a priori distribution between who’s doing the building and who is not. We know the queen does not set the agenda,” she explained. “These colonies start with hundreds of termites and expand their structure as they grow.”

The question fascinated her. “I have no idea how that works,” she said. “I mean, how do you create systems that are so adaptive?”

Finding the rules

Researchers have spent decades answering that question. One way, they found, is to act locally. Take, for example, a flock of geese at a pond. If one or two birds on the outside of the flock see a predator, they grow agitated and fly off, alerting the next nearest birds. The message percolates through flock. Once a certain number of birds have “voted” to fly off, the rest follow without any hesitation. They are not following a leader, only reacting only to the birds next to them.

How dynamic circle formation works

The same type of local behaviors could be used to make driverless vehicles safer. An autonomous vehicle, Nagpal explains, does not have to reason about all the other cars on the road, only the ones around it. By focusing on nearby vehicles, these distributed systems use less processing power without losing the ability to react to changes very quickly.

Such systems are highly scalable. “Instead of having to reason about everybody, your car only has to reason about its five neighbors,” Nagpal said. “I can make the system very large, but each individual’s reasoning space remains constant. That’s a traditional notion of scalable —the amount of processing per vehicle stays constant, but we’re allowed to increase the size of the system.”

Another key to swarm behavior involves embodied intelligence, the idea that brains interact with the world through bodies that can see, hear, touch, smell, and taste. This is a type of intelligence, too, Nagpal argues.

It’s almost like each individual fish acts like a distributed sensor. Instead of me doing all the work, somebody on the left can say, ‘Hey, I saw something.’ When the group divides the labor so that some of us look out for predators while the rest of us eat, it costs less in terms of energy and resources.
Radhika Nagpal

“When you think of an ant, there is not a concentrated set of neurons there,” she said, referring to the ant’s 20-microgram brain. “Instead, there is a huge amount of awareness in the body itself. I may wonder how an ant solves a problem, but I have to realize that somehow having a physical body full of sensors makes that easier. We do not really understand how to think about that still.”

Local actions, scalable behavior, and embodied intelligence are among the factors that make swarms successful. In fact, researchers have shown that the larger a school of fish, the more successful it is at evading predators, finding food, and not getting lost.

“It’s almost like each individual fish acts like a distributed sensor,” Nagpal said. “Instead of me doing all the work, somebody on the left can say, ‘Hey, I saw something.’ When the group divides the labor so that some of us look out for predators while the rest of us eat, it costs less in terms of energy and resources than trying to eat and look out for predators all by yourself.

“What’s really interesting about large insect colonies and fish schools is that they do really complicated things in a decentralized way, whereas people have a tendency to build hierarchies as soon as we have to work together,” she continued. “There is a cost to that, and if we try to do that with that with robots, we replicate the whole management structure and cost of a hierarchy.”

So Nagpal set out to build robots swarms that worked without top-down organization.

Animal behavior

A typical process in Nagpal’s group starts by identifying an interesting natural behavior and trying to discover the rules that generate those actions. Sometimes, they are surprisingly simple.

Take, for example, some behaviors exhibited by Nagpal’s colony of 1,000 interactive robots, each the size of quarter and each communicating with its nearest neighbors wirelessly. The robots will self-assemble into a simple line with a repeating color pattern based on only two rules: a motion rule that allows them to move around any stationary robots, and a pattern rule that tells them to take on the color of their two nearest neighbors.

Other combinations of simple rules spontaneously synchronize the blinking of robot lights, guide migrations, and get the robots to form the letter “K.”

Most impressively, Nagpal and her lab used a behavior found in termites, called stigmergy, to prompt self-organized robot swarms to build a tower. Stigmergy involves leaving a mark on the environment that triggers a specific behavior by another member of the group.

Stigmergy plays a role in how termites build their huge nests. One termite may sense that a spot would make a good place to build, so it puts down its equivalent of a mud brick. When a second termite comes along, the brick triggers it to place its brick there. As the number of bricks increase, the trigger grows stronger and other termites begin building pillars nearby. When they grow high enough, something triggers the termites to begin connecting them with roofs.

“The building environment has become a physical memory of what should happen next,” Nagpal said.

Nagpal used that type of structural memory to prompt her robotic swarm to build a ziggurat tower. The instructions included a motion rule about how to move through the tower and a pattern rule about where to place the blocks. She then built some small, block-carrying robots that built a smaller but no less impressive structure.

Her lab developed a compiler that could generate algorithms that would enable the robots to build specific types of structures — perhaps towers with minarets — by interacting with stigmergic physical memories. One day, algorithm-driven robots could move sandbags to shore up a levee in a hurricane or buttress a collapsed building. They could even monitor coral reefs, underwater infrastructure, and pipelines — if they could swim.

Schooling robofish

From the start, Nagpal wanted to build her own school of robotic fish, but the hardware was simply too clunky to make them practical. That changed with the advent of smartphones, with their low-cost, low-power processors, sensors, and batteries.

In 2018, she got her chance when she received an Amazon Machine Learning Research Award. This allowed her to build Blueswarm, a group of robotic fish that performed tasks like those she observed in the Caribbean years ago.

Each Bluebot is just four inches long, but it packs a small Raspberry Pi computer, two fish-eye cameras, and three blue LED lights. It also has a tail (caudal) fin for thrust, a dorsal fin to move up or down, and side fins (pectoral fins) to turn, stop, or swim backward.

Bluebots do not use Wi-Fi, GPS, or external cameras to communicate their positions without error. Instead, she wants to explore what behaviors are possible relying only on cameras and local perception of one’s mates.

How multi-behavior search works

Researchers, she explained, find it difficult to rely only upon local perception. It has been difficult to tackle fundamental questions, like how does a robot visually detect other members of the swarm, how they parse information, and what happens when one member moves in front of another. Limiting Bluebot sensing to local perception forces Nagpal and her team to think more deeply about what robots really need to know about their neighbors, especially when data is limited and imprecise. 

Bluebots can mimic several fish school behaviors by tracking LED lights on the neighboring fishbots around them. Using 3D cameras and simple algorithms, they estimate distance between lights on neighboring fish. (The closer they appear, the further the fish.)

Nagpal’s seven Bluebots form a circle (called milling) by turning right if there is a robot in front of them. If there is no robot, they turn left. After a few moments, the school will be swimming in a circle, a formation fish use to trap prey.

They can also search for a target flashing red light. First, the school disperses within the tank. When a Bluebot finds the red LED, it begins to flash its lights. This signals the nearest Bluebots to aggregate, followed by the rest. If a single robot had to conduct a similar search by itself, it would take significantly longer.

These behaviors are impressive for robots, but represent a small subset of fish school behaviors. They also take place in a static fish tank populated by only one school of robot fish. To go further, Nagpal wants to improve their sensors and perhaps use machine learning to discover new rules that could be combined to produce the aquatic equivalent of a tower.

In the end, though, Nagpal does not want to build a better fish. Instead, she wants to apply the lessons she has learned to real-world robots. She is doing just that during a sabbatical working at Amazon, which operates the largest fleet of robots — more than 200,000 units — in the world.

Practical uses

Nagpal had little previous experience working in industry, but she jumped at the chance to work with Amazon.

“There are few others with hundreds of robots moving around safely in a facility space,” she said. “And the opportunity to work on algorithms in a deployed system was very exciting."

There are few others [like Amazon] with hundreds of robots moving around safely in a facility space. And the opportunity to work on algorithms in a deployed system was very exciting.
Radhika Nagpal

“The other factor is that Amazon’s robots do a mix of centralized and decentralized decision-making," she continued. "The robots plan their own paths, but they also use the cloud to know more. That lets us ask: Is it better to know everything about all your neighbors all the time? Or is it better to only know about the neighbors that are closer to you?”

Her current focus is on sortation centers, where robots help route packages to shipping stations sorted by ZIP codes. Not surprisingly, robots setting out from multiple points to dozens of different locations require a degree of coordination. Amazon’s robots are already aware of other robots. If they see one, they will choose an alternate route. But what path should they take, Nagpal asks. She wants to make sure those robots are making the most effective possible choices.

Cities already manage this. They limit access to some roads, change speed limits, and add one-way streets. Computer networks do it as well, rerouting traffic when packet delivery slows down.

Some of those concepts, such as one-way travel lanes, also work in sortation centers. They could act as stigmergic signals to guide robot behavior. She also believes there might be a way to create simple swarm behaviors that enable robots to react to advanced data about incoming packages.

Once her sabbatical is over, Nagpal plans to return to the lab. She wants to keep working on her Bluebots, improving their vision, and turning them loose in environments that look more like the coral reef she went snorkeling in 25 years ago.

She is also dreaming of swarms of bigger robots for use in construction or trash collection.

“Maybe we could do what Amazon is doing, but do it outside,” she said. “We could have swarms of robots that actually do some sort of practical task. At Amazon, that task is delivery. But given Boston’s snowstorms, I think shoveling the sidewalks would be nice.”

Research areas

Related content

GB, Cambridge
The Amazon Artificial General Intelligence (AGI) team is looking for a passionate, highly skilled and inventive Senior Applied Scientist with strong machine learning background to lead the development and implementation of state-of-the-art ML systems for building large-scale, high-quality conversational assistant systems. As a Senior Applied Scientist, you will play a critical role in driving the development of personalization techniques enabling conversational systems, in particular those based on large language models, to be tailored to customer needs. You will handle Amazon-scale use cases with significant impact on our customers' experiences. Key job responsibilities - Drive new initiatives applying Machine Learning techniques to improve our recommendation, search, NLU and entity matching algorithms - Perform hands-on data analysis and modeling with large data sets to develop insights that increase device usage and customer experience - Design and run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Setup and monitor alarms to detect anomalous data patterns and perform root cause analyses to explain and address them - Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences - Help attract and recruit technical talent; mentor junior scientists We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR | London, GBR
MX, DIF, Mexico City
Amazon launched the Generative AI (GenAI) Innovation Center (GenAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. The GenAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GenAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Mexico City, DIF, MEX
US, CA, Santa Clara
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an Data Scientist, you will * Collaborate with AI/ML scientists and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges * Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production * Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder * Provide customer and market feedback to Product and Engineering teams to help define product direction About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Sales, Marketing and Global Services (SMGS) AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. We are open to hiring candidates to work out of one of the following locations: Austin, TX, USA | Houston, TX, USA | Portland, OR, USA | San Diego, CA, USA | San Francisco, CA, USA | Santa Clara, CA, USA | Seattle, WA, USA
MX, DIF, Mexico City
Are you a data enthusiast? Does the world’s most complex logistic systems inspire your curiosity? Is your passion to navigate through hundreds of systems, processes, and data sources to solve the puzzles and identify the next big opportunity? Are you a creative big thinker who is passionate about using data and optimization tools to direct decision making and solve complex and large-scale challenges? Do you feel like your skills uniquely qualify you to bridge communication between teams with competing priorities? If so, then this position is for you! We are looking for a motivated individual with strong analytic and communication skills to join the effort in evolving the network we have today into the network we need tomorrow. Amazon’s extensive logistics system is comprised of thousands of fixed infrastructure nodes, with millions of possible connections between them. Billions of packages flow through this network on a yearly basis, making the impact of optimal improvements unparalleled. This magnificent challenge is a terrific opportunity to analyze Amazon’s data and generate actionable recommendations using optimization and simulation. Come build with us! In this role, your main focus will be to perform analysis, synthesize information, identify business opportunities, provide project direction, and communicate business and technical requirements within the team and across stakeholder groups. You consider the needs of day-to-day operations and insist on the standards required to build the network of tomorrow. You will assist in defining trade-offs and quantifying opportunities for a variety of projects. You will learn current processes, build metrics, educate diverse stakeholder groups, assist science groups in initial solution design, and audit all model implementation. A successful candidate in this position will have a background in communicating across significant differences, prioritizing competing requests, and quantifying decisions made. The ideal candidate will have a strong ability to model real world data with high complexity and delivery high quality analysis, data products and optimizations models for strategic decision. They are excited to be part of, and learn from, a large science community and are ready to dig into the details to find insights that direct decisions. The successful candidate will have good communication skills and an ability to speak at a level appropriate for the audience, will collaborate effectively with scientists, product managers and business stakeholders. Key job responsibilities Statistical Models (ML, regression, forecasting, ) Optimization models, AB and hypothesis testing, Bayesian models. Communication skills with both tech and non tech stakeholders. Writting skills, capable to create documents for different types of readers (business, science, tech) to communicate results on analysis, testing. A day in the life We are open to hiring candidates to work out of one of the following locations: Mexico City, DIF, MEX
IT, Turin
The Artificial General Intelligent team (AGI) seeks a Applied Scientist with a strong background in machine and deep learning to spearhead the advancement and deployment of cutting-edge ML systems. As part of this team, you will collaborate with talented peers to create scalable solutions for an innovative conversational assistant, aiming to revolutionize user experiences for millions of Alexa customers. Creating reliable, scalable and high performance products requires exceptional technical expertise, and a sound understanding of the fundamentals of Machine Learning, NLP and Problem solving. This role requires working closely with business, engineering and other scientists within the team and across Amazon to raise the bar in operational excellence, improving tools and automating workflows. You will lead high visibility and high impact programs collaborating with various teams across Amazon. The candidate is self-motivated, thrives in ambiguous and fast-paced environments, possess the drive to tackle complex challenges, and excel at swiftly delivering impactful solutions while iterating based on user feedback. Join us in our mission to redefine industry standards and provide unparalleled experiences for our customers. Key job responsibilities * Analyze, understand, and model customer behavior and the customer experience based on large scale data * Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints * Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results * Build and deploy automated model training and evaluation pipelines * Perform model/data analysis and monitor metrics through online A/B testing * Research and implement novel machine learning and deep learning algorithms and models. We are open to hiring candidates to work out of one of the following locations: Turin, ITA
GB, Cambridge
We are looking for a passionate, talented, and resourceful Applied Scientist with background in Natural Language Processing (NLP), Large Language Models (LLMs), Question Answering, Information Retrieval, Reinforcement Learning, or Recommender Systems to invent and build scalable solutions for a state-of-the-art conversational assistant. The ideal candidate should have a robust foundation in machine learning and a keen interest in advancing the field. The ideal candidate would also enjoy operating in dynamic environments, have the self-motivation to take on challenging problems to deliver big customer impact, and move fast to ship solutions and then iterate on user feedback and interactions. Key job responsibilities * Work collaboratively with scientists and developers to design and implement automated, scalable NLP/ML/QA/IR models for accessing and presenting information; * Drive scalable solutions end-to-end from business requirements to prototyping, engineering, production testing to production; * Drive best practices on the team, deal with ambiguity and competing objectives, and mentor and guide junior members to achieve their career growth potential. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
DE, BE, Berlin
We are looking for a passionate, talented, and resourceful Applied Scientist with background in Natural Language Processing (NLP), Large Language Models (LLMs), Question Answering, Information Retrieval, Reinforcement Learning, or Recommender Systems to invent and build scalable solutions for a state-of-the-art conversational assistant. The ideal candidate should have a robust foundation in machine learning and a keen interest in advancing the field. The ideal candidate would also enjoy operating in dynamic environments, have the self-motivation to take on challenging problems to deliver big customer impact, and move fast to ship solutions and then iterate on user feedback and interactions. Key job responsibilities * Work collaboratively with scientists and developers to design and implement automated, scalable NLP/ML/QA/IR models for accessing and presenting information; * Drive scalable solutions end-to-end from business requirements to prototyping, engineering, production testing to production; * Drive best practices on the team, deal with ambiguity and competing objectives, and mentor and guide junior members to achieve their career growth potential. We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU
US, WA, Seattle
Do you wish to create the greatest possible worldwide impact in healthcare? We, at Amazon Health Store Tech, are working towards the best-in-class healthcare storefront to make high-quality healthcare reliable, accessible, and intuitive. Our mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. We are looking to hire and develop subject-matter experts in AI who focus on data analytics, machine learning (ML), natural language understanding (NLP), and deep learning for healthcare. We target high-impact algorithmic unlocks in areas such as natural language understanding (NLU), Foundation Models, Large Language Models (LLMs), document understanding, and knowledge representation systems—all of which are of high-value to our healthcare products and services. If you are a seasoned, hands-on Principal Applied Scientist with a track record of delivering to timelines with high quality, deeply technical and innovative, we want to talk to you. You will bring AI and machine learning advancements to real-time analytics for customer-facing solutions in healthcare. You will explore, innovate, and deliver advanced ML-based technologies that involve clinical and medical data. You are a domain expert in one or more of the following areas: natural language processing and understanding (language models, transformers like BERT, GPT-3, T-5, etc.), Foundation Models and LLMs, deep learning, active learning, reinforcement learning, and bioinformatics. Key job responsibilities As an Principal Applied Scientist, you will take on challenging and ambiguous customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and medical research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to its implementation. A successful candidate has excellent technical depth, scientific vision, great implementation skills, and a drive to achieve results in a collaborative team environment. You should enjoy the process of solving real-world, open-ended problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a fearless disruptor, prolific innovator, and a reputed problem solver—someone who truly enables machine learning and statistics to truly impact the lives and health of millions of customers. You mentor and help develop a team of Applied Scientists and SDEs and work with key leaders to guide this top talent to push the boundary of science and next generation of product. They will lead the technical implementation of our evidence-based retrieval sub-system that ingests, indexes and retrieves relevant data in different forms and from multiple sources given the customer question and context. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Amazon Ads Response Prediction team is your choice, if you want to join a highly motivated, collaborative, and fun-loving team with a strong entrepreneurial spirit and bias for action. We are seeking an experienced and motivated Senior Machine Learning Applied Scientist who loves to innovate at the intersection of customer experience, deep learning, and high-scale machine-learning systems. This role will focus on driving the technical direction of ML solutions to connect customs with right products. Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. We are looking for a talented Senior Machine Learning Applied Scientist for our Amazon Ads Response Prediction team to grow the business. We are providing advanced real-time machine learning services to connect shoppers with right ads on all platforms and surfaces worldwide. Through the deep understanding of both shoppers and products, we help shoppers discover new products they love, be the most efficient way for advertisers to meet their customers, and helps Amazon continuously innovate on behalf of all customers. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. As an Senior Machine Learning Applied Scientist, you will: - Conduct hands-on data analysis, build large-scale machine-learning models and pipelines - Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production - Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving - Provide technical leadership, research new machine learning approaches to drive continued scientific innovation - Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences - Help attract and recruit technical talent Preferred Qualifications: - Ph.D. in Computer Science, Information Retrieval, Machine Learning, Natural Language Processing, Statistics, Applied Mathematics, or related discipline - Breadth and depth knowledge of machine learning algorithms and best practices - At least 5 years of hands-on experience in building Machine Learning solutions to solve real-world problems - At least 3 years of experience with computer science fundamentals in object-oriented design, data structures, algorithm design, problem solving, and complexity analysis - At least 3 years of experience with, at least, one modern programming language such as Java, Python, Scala, C++ - Experience in building large-scale machine-learning models for online recommendation, ads ranking, personalization, or search, etc. - Experience with Big Data technologies such as AWS, Hadoop, Spark, Pig, Hive - Strong proficiency with Java, Python, Scala or C++ - Experience in computational advertising technology is a big plus - Published research work in academic conferences or industry circles - Excellent oral and written communication skills, with the ability to communicate complex technical concepts and solutions to all levels of the organization We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, CA, Palo Alto
The Amazon Search Mission Understanding (SMU) team is at the forefront of revolutionizing the online shopping experience through the Amazon search page. Our ambition extends beyond facilitating a seamless shopping journey; we are committed to creating the next generation of intelligent shopping assistants. Leveraging cutting-edge Large Language Models (LLMs), we aim to redefine navigation and decision-making in e-commerce by deeply understanding our users' shopping missions, preferences, and goals. By developing responsive and scalable solutions, we not only accomplish the shopping mission but also foster unparalleled trust among our customers. Through our advanced technology, we generate valuable insights, providing a guided navigation system into various search missions, ensuring a comprehensive and holistic shopping experience. Our dedication to continuous improvement through constant measurement and enhancement of the shopper experience is crucial, as we strategically navigate the balance between immediate results and long-term business growth. We are seeking an Applied Scientist who is not just adept in the theoretical aspects of Machine Learning (ML), Artificial Intelligence (AI), and Large Language Models (LLMs) but also possesses a pragmatic, hands-on approach to navigating the complexities of innovation. The ideal candidate will have a profound expertise in developing, deploying, and contributing to the next-generation shopping search engine, including but not limited to Retrieval-Augmented Generation (RAG) models, specifically tailored towards enhancing the Rufus application—an integral part of our mission to revolutionize shopping assistance. You will take the lead in conceptualizing, building, and launching groundbreaking models that significantly improve our understanding of and capabilities in enhancing the search experience. A successful applicant will display a comprehensive skill set across machine learning model development, implementation, and optimization. This includes a strong foundation in data management, software engineering best practices, and a keen awareness of the latest developments in distributed systems technology. We are looking for individuals who are determined, analytically rigorous, passionate about applied sciences, creative, and possess strong logical reasoning abilities. Join the Search Mission Understanding team, a group of pioneering ML scientists and engineers dedicated to building core ML models and developing the infrastructure for model innovation. As part of Amazon Search, you will experience the dynamic, innovative culture of a startup, backed by the extensive resources of Amazon.com (AMZN), a global leader in internet services. Our collaborative, customer-centric work environment spans across our offices in Palo Alto, CA, and Seattle, WA, offering a unique blend of opportunities for professional growth and innovation. Key job responsibilities Collaborate with cross-functional teams to identify requirements for ML model development, focusing on enhancing mission understanding through innovative AI techniques, including retrieval-Augmented Generation or LLM in general. Design and implement scalable ML models capable of processing and analyzing large datasets to improve search and shopping experiences. Must have a strong background in machine learning, AI, or computational sciences. Lead the management and experiments of ML models at scale, applying advanced ML techniques to optimize science solution. Serve as a technical lead and liaison for ML projects, facilitating collaboration across teams and addressing technical challenges. Requires strong leadership and communication skills, with a PhD in Computer Science, Machine Learning, or a related field. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA | Seattle, WA, USA