2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

RecipientUniversityResearch title
Vikram AdveUniversity of Illinois Urbana-ChampaignExtending the LLVM compiler infrastructure for tensor architectures
Pulkit AgrawalMassachusetts Institute of TechnologyA framework for multi-step planning for manipulating rigid objects
Ron AlterovitzUniversity of North Carolina at Chapel HillCloud-based motion planning: an enabling technology for next-generation autonomous robots
Jimmy BaUniversity of TorontoModel-based reinforcement learning with causal world models
Saurabh BagchiPurdue University—West LafayetteContent and contention-aware approximate streaming video analytics for edge devices
David Baker EffendiStellenbosch UniversityDataflow analysis using code property graphs, graph databases and synchronized pushdown systems
Sivaraman BalakrishnanCarnegie Mellon UniversityFoundations of robust machine learning: from principled approaches to practice
Elias BareinboimColumbia UniversityOff-policy evaluation through causal modeling
Clark BarrettStanford UniversityModel-based testing of SMT solvers
Lars BirkedalAarhus UniversityModular reasoning about distributed systems: higher-order distributed separation logic
David BleiColumbia UniversityNew directions in observational causal inference
Eric BoddenPaderborn UniversityHybridCG — dynamically-enriched call-Graph generation of Java enterprise applications
Legand BurgeHoward UniversityVoice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions
James CaverleeTexas A&M University, College StationFairness in recommendation without demographics
Changyou ChenUniversity at BuffaloScaling up human-action analysis systems
Danqi ChenPrinceton UniversityBuilding broad-coverage, structured dense knowledge bases for natural language processing tasks
Helen ChenUniversity of WaterlooOptimizing pretrained clinical embeddings for automatic COVID-related ICD coding
Yiran ChenDuke UniversityPrivacy-preserving representation learning on graphs — a mutual information perspective
Margarita ChliETH ZurichVision-based emergency landing in urban environments using reinforcement learning and deep learning
Kyunghyun ChoNew York UniversityIndependently controllable attributes for controllable neural text generation
Carlo CilibertoUniversity College LondonOptimal transport for meta-learning
Loris D'AntoniUniversity of Wisconsin–MadisonCorrect-by-construction IAM policies
David DanksCarnegie Mellon UniversityAn integrated framework for understanding human-AI hybrid decision-making
Suhas DiggaviUniversity of California, Los AngelesCompressed private and secure distributed edge learning
Greg DurrettUniversity of Texas At AustinMaking conditional text generation fair and factual
Sergio EscaleraUniversitat de Barcelona and Computer Vision CenterPortable virtual try-on for smart devices
Jan FaiglCzech Technical University in PragueCommunication maps building in subterranean environments
Pietro FerraraCa' Foscari University of VeniceIAM access control policies verification and inference
Katerina FragkiadakiCarnegie Mellon UniversityGeneralizing manipulation across objects, configurations and views using a visually-grounded library of behaviors
Guillermo GallegoTechnical University of BerlinOnline in-hand object tracking and grasp failure detection with an event-based camera
Grace GaoStanford UniversityTrustworthy autonomous vehicle localization using a joint model-driven and data-driven approach
Stephanie GilHarvard UniversityEnabling the next generation of coordinated robots: scalable real-time decision making
Luca GiuggioliUniversity of BristolMulti-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering
Jorge GoncalvesUniversity of MelbourneIntegrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks
Ananth GramaPurdue University—West LafayetteScaling causal inference to explainable clinical recommendations
Grace GuUniversity of California, BerkeleySurrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices
Ronghui GuColumbia UniversityMicroverification of the Linux KVM hypervisor: proving VM confidentiality and integrity
Aarti GuptaPrinceton UniversityLearning abstract specifications from distributed program implementations
Saurabh GuptaUniversity of Illinois Urbana-ChampaignSelf-supervised discovery of object states and transitions from unlabeled videos
Daniel HaraborMonash UniversityAnytime constraint-based multi-agent pathfinding
Hynek HermanskyJohns Hopkins UniversityMultistream lifelong federated learning for machine recognition of speech
Bin HuUniversity of Illinois Urbana-ChampaignProvably robust adversarial reinforcement learning for sequential decision making in safety-critical environments
Lifu HuangVirginia TechEvent-centric temporal and causal knowledge acquisition and generalization for natural language understanding
Dinesh JayaramanUniversity of PennsylvaniaLearning modular dynamics models for plug-and-play visual control
Sven KoenigUniversity of Southern CaliforniaImproving planning and plan execution for warehouse automation
Laura KovacsTU WienFOREST: first-order reasoning for ensuring system security
Arun KumarUniversity of California, San DiegoImproving automated feature type inference for AutoML on tabular data
Himabindu LakkarajuHarvard UniversityTowards reliable and robust model explanations
Kevin Leyton-BrownUniversity of British ColumbiaAutomated machine learning for tabular datasets using hyperband embedded reinforcement learning
Bo LiUniversity of Illinois Urbana-ChampaignMachine learning evaluation as a service for robustness, fairness, and privacy utilities
Ke LiUniversity of ExeterMany hands make work light: multi-task deep semantic learning for testing web application firewalls
Zhiqiang LinOhio State UniversityType-aware recovery of symbol names in binary code: a machine learning based approach
Jeffrey LiuMassachusetts Institute of TechnologyIntegrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum
Michael MahoneyUniversity of California, BerkeleySystematic methods for efficient inference and training of neural networks
Radu MarculescuUniversity of TexasNew directions for 3D object detection: distributed inference on edge devices using knowledge distillation
Ruben MartinsCarnegie Mellon UniversityImproving performance and trust of MaxSAT solvers
Jiri MatasCzech Technical University in PragueTraining neural networks on non-differentiable losses
Michael MilfordQueensland University of TechnologyComplementarity-aware multi-process fusion for long term localization
Heather MillerCarnegie Mellon UniversityDirected automated explicit-state model checking for distributed applications
Ndapa NakasholeUniversity of California, San DiegoLearning representations for voice-based conversational agents for older adults
Shrikanth NarayananUniversity of Southern CaliforniaToward inclusive human-AI conversational experiences for children
Lerrel PintoNew York UniversityLearning to manipulate deformable objects through robust simulations
Ravi RamamoorthiUniversity of California, San DiegoSparse multi-view object acquisition using learned volumetric representations
Philip ResnikUniversity of Maryland, College ParkAdvanced topic modeling to support the understanding of COVID-19 and its effects
Daniela RusMassachusetts Institute of TechnologyLearning to plan through imagined self-play for multi-agent system
Supreeth ShashikumarUniversity of California, San DiegoPrivacy preserving continual learning with applications to critical care
Robert ShepherdCornell UniversityEnduring and adaptive robots via electrochemical blood
Cong ShiUniversity of Michigan, Ann ArborMachine learning for personalized assortment optimization
Florian ShkurtiUniversity of TorontoGenerating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators
Abhinav ShrivastavaUniversity of Maryland, College ParkThe pursuit of knowledge: discovering and localizing new concepts using dual memory
Roland SiegwartETH ZurichSafe self-calibration of hybrid aerial vehicles
Sameer SinghUniversity of California, IrvineDetecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence
Noah SmithUniversity of Washington - SeattleLanguage model customization
Mahdi SoltanolkotabiUniversity of Southern CaliforniaArtificial intelligence for fast and portable medical imaging (with limited training data)
Seung Woo SonUniversity of Massachusetts LowellReliable and accurate anomaly detection in edge nodes using sparsity profile
Dawn SongUniversity of California, BerkeleyKnowledge-enhanced cyber threat hunting
Dezhen SongTexas A&M University, College StationOptoacoustic material and structure pretouch sensing at robot fingertip
Shuran SongColumbia UniversityDexterity through diversity:learning a generalizable grasping policy for diverse end-effectors
Yizhou SunUniversity of California, Los AngelesAccelerating graph neural network training
Russ TedrakeMassachusetts Institute of TechnologyIntuitive physics for manipulation
James TompkinBrown UniversityReal-time multi-camera fusion for unoccluded VR robot teleoperation
Emina TorlakUniversity of Washington - SeattleAutomated verification of JIT compilers for BPF
Marynel VazquezYale UniversityEvaluating social robot navigation via online human-driven simulations
Nisheeth VishnoiYale UniversityFair and error-resilient algorithms for AI and ML
Gang WangUniversity of Illinois at Urbana–ChampaignCombating concept drift in security applications via proactive data synthesis
Hao WangRutgers University-New BrunswickStructured domain adaptation with applications to personalization and forecasting
James WangPennsylvania State UniversityAffective and social interaction between human and intelligent machine
Gloria WashingtonHoward UniversityTowards identification of uncomfortable speech in conversations
Chuan WuThe University of Hong KongCompilation optimization in distributed DNN training: joining OP and tensor fusion/partition
Eugene WuColumbia UniversityHuman-in-the-loop data debugging for ML-oriented analytics
Jiajun WuStanford UniversityImplicit dynamic scene representation learning for robotics
Ming-Ru WuDana-Farber Cancer InstituteFrom bench to clinic – machine-learning based cancer immunotherapy design
Diyi YangGeorgia Institute of TechnologyAbstractive conversation summarization at scale
Sixian YouMassachusetts Institute of TechnologyAI-driven label-free histology for cancer diagnosis
Jingjin YuRutgers University-New BrunswickPushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics
Rui ZhangPennsylvania State UniversityBuilding robust conversational question answering systems over databases of tabular data
Yu ZhangUniversity of South FloridaDesign of an automated advanced air mobility flight planning system (AAFPS)
Yuke ZhuUniversity of Texas at AustinLearning implicit shape affordance for grasping and manipulation
Marinka ZitnikHarvard UniversityActionable graph learning for finding cures for emerging diseases
James ZouStanford UniversityHow to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
IN, TS, Hyderabad
Job summaryAre you excited about driving business growth for millions of sellers by applying Machine Learning? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? We are looking for experienced data scientists to build sophisticated decision making systems that help Amazon Marketplace Sellers to grow their businesses.Amazon Marketplace enables sellers to reach hundreds of millions of customers and provides sellers the tools and services needed to make e-commerce simple, efficient and successful. Our team builds the core intelligence, insights, and algorithms that power a range of products used by millions of sellers. We are tackling large-scale, challenging problems such as helping sellers to prioritise business tasks by bringing together petabytes of data from sources across Amazon.You will be proficient with creating value out of data by formulating questions, analysing vast amounts of data, and communicating insights effectively to audience of varied backgrounds. In addition, you'll contribute to online experiments, build machine learning pipelines and personalised data products.To know more about Amazon science, Please visit https://www.amazon.scienceKey job responsibilities· Collaborate with domain experts, formulate questions, gather, process and analyse petabytes of data to unearth reliable insights· Design & execute experiments and analyze experimental results· Communicate insights effectively to audience of a wide range of backgrounds· Formulate relevant prediction problems and solve them by developing machine learning models· Partner with data engineering teams to improve quality of data assets, metrics and insights· Leverage industry best practices to establish repeatable science practices, principles & processes
US, WA, Seattle
Job summaryAmazon Sub-Same-Day Supply Chain team is looking for an experienced and motivated Senior Data Scientist to generate data-driven insights influencing the long term SSD supply chain strategy, build the necessary predictive models, optimization algorithms and customer behavioral segments allowing us to discover and build the roadmap for SSD to enable operational efficiency and scale.Key job responsibilitiesWork with product managers, engineers, other scientists, and leadership to identify and prioritize complex problems.Translate business problems into specific analytical questions and form hypotheses that can be answered with available data using scientific methods or identify additional data needed in the master datasets to fill any gapsDesign, develop, and evaluate highly innovative statistics and ML modelsGuide and establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationProactively seek to identify business opportunities and insights and provide solutions to shape key business processes and policies based on a broad and deep knowledge of Amazon data, industry best-practices, and work done by other teams.A day in the lifeIn this role, you will be a technical expert with significant scope and impact. You will work with Product Managers, Business Engineers, and other Scientists, to deeply understand SSDs current optimization strategy while benchmarking against industry best practices and standards to gain insights that will drive our roadmap. A successful Data Scientist will have extreme bias for action needed in a startup environment, with outstanding leadership skills, proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. It will be a person who enjoys diving deep into data, doing analysis, discovering root causes, and designing long-term scientific solutions. We are seeking someone who can thrive in a fast-paced, high-energy and fun work environment where we deliver value incrementally and frequently. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career.About the teamAmazon's Sub-Same Day (SSD) delivery program is designed to get customers their items as fast as possible – currently in as quickly as five hours. With ultra-fast delivery becoming increasingly important, we are looking for an experienced Senior Data Scientist to help us benchmark against industry standards to uncover insights to improve and optimize the long term supply chain strategy for Amazons Sub-Same-Day business.
US, NY, New York
Job summaryJob summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, VA, Arlington
Job summaryAmazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities.Sponsored Products helps merchants, retail vendors, and brand owners succeed via native advertising that grows incremental sales of their products sold through Amazon. The Sponsored Products Ad Marketplace organization optimizes the systems and ad placements to match advertiser demand with publisher supply using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. Our goals are to help buyers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and to build a major, sustainable business that helps Amazon continuously innovate on behalf of all customers.We are seeking a Sr. Applied Science Manager who has a solid background in applied Machine Learning and AI, deep passion for building data-driven products, ability to communicate data insights and scientific vision, and has a proven track record of leading both applied scientists and software engineers to execute complex projects and deliver business impacts.In this team, Machine Learning and Deep Learning technologies including Semantic Retrieval, Natural Language Processing (NLP), Information Extraction, Image Understanding, Learning to Rank are used to match shoppers' search queries to ads with per impression prediction models that run in real-time with tight latency budgets. Models are trained using self-supervised techniques, transfer learning, and supervised training using labeled datasets. Knowledge distillation and model compression techniques are used to optimize model performance for production serving.The Senior Manager role will lead science and engineering efforts in these areas for Amazon Search pages WW. The person in this role is responsible for: maintaining the consistent and long term reliability for the models and the delivery services that power them, managing diverse teams across multiple domains, and collaborating cross-functional with other senior decision makers. Our critical LPs for this role are Think Big, Are Right A lot, and Earns Trust. What is key is that the leader will need a dynamic mindset to build systems that are flexible and will scale.In this role, you will:· Lead a group of both applied scientists and software engineers to deliver machine-learning and AI solutions to production.· Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner.· Develop science and engineering roadmap, run Sprint/quarter and annual planning, and foster cross-team collaboration to execute complex projects.· Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management.· Hire and develop top talents, provide technical and career development guidance to both scientists and engineers in the organization.Locations: Seattle, WA; New York, NY; Arlington, VA
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryAmazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers. We are seeking a skilled Applied Scientist to help us build the future of experimentation systems at Amazon.About you:You have an entrepreneurial spirit and want to make a big impact on Amazon and its customers. You are excited about cutting-edge research on unsupervised learning, graph algorithms, and causal inference in the intersection between Machine Learning, Statistics, and Econometrics. You enjoy building massive scale and high performance systems but also have a bias for delivering simple solutions to complex problems. You're looking for a career where you'll be able to build, to deliver, and to impress. You challenge yourself and others to come up with better solutions. You develop strong working relationships and thrive in a collaborative team environment.About us together:We're going to help Amazon make better long term decisions by designing and delivering A/B-testing systems for long-term experiments, and by using these systems to figure out how near term behavior impacts long term growth and profitability. Our work will inform some of the biggest decisions at Amazon. Along the way, we're going to face seemingly insurmountable challenges. We're going to argue about how to solve them, and we'll work together to find a solution that is better than each of the proposals we came in with. We'll make tough decisions, but we'll all understand why. We'll be the dream team.We have decades of combined experience on the team in many areas science and engineering so it's a great environment in which to learn and grow. A/B testing is one of the hottest areas of research and development in the world today and this is a chance to learn how it works in the company known for pioneering its use.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.