2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

RecipientUniversityResearch title
Vikram AdveUniversity of Illinois Urbana-ChampaignExtending the LLVM compiler infrastructure for tensor architectures
Pulkit AgrawalMassachusetts Institute of TechnologyA framework for multi-step planning for manipulating rigid objects
Ron AlterovitzUniversity of North Carolina at Chapel HillCloud-based motion planning: an enabling technology for next-generation autonomous robots
Jimmy BaUniversity of TorontoModel-based reinforcement learning with causal world models
Saurabh BagchiPurdue University—West LafayetteContent and contention-aware approximate streaming video analytics for edge devices
David Baker EffendiStellenbosch UniversityDataflow analysis using code property graphs, graph databases and synchronized pushdown systems
Sivaraman BalakrishnanCarnegie Mellon UniversityFoundations of robust machine learning: from principled approaches to practice
Elias BareinboimColumbia UniversityOff-policy evaluation through causal modeling
Clark BarrettStanford UniversityModel-based testing of SMT solvers
Lars BirkedalAarhus UniversityModular reasoning about distributed systems: higher-order distributed separation logic
David BleiColumbia UniversityNew directions in observational causal inference
Eric BoddenPaderborn UniversityHybridCG — dynamically-enriched call-Graph generation of Java enterprise applications
Legand BurgeHoward UniversityVoice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions
James CaverleeTexas A&M University, College StationFairness in recommendation without demographics
Changyou ChenUniversity at BuffaloScaling up human-action analysis systems
Danqi ChenPrinceton UniversityBuilding broad-coverage, structured dense knowledge bases for natural language processing tasks
Helen ChenUniversity of WaterlooOptimizing pretrained clinical embeddings for automatic COVID-related ICD coding
Yiran ChenDuke UniversityPrivacy-preserving representation learning on graphs — a mutual information perspective
Margarita ChliETH ZurichVision-based emergency landing in urban environments using reinforcement learning and deep learning
Kyunghyun ChoNew York UniversityIndependently controllable attributes for controllable neural text generation
Carlo CilibertoUniversity College LondonOptimal transport for meta-learning
Loris D'AntoniUniversity of Wisconsin–MadisonCorrect-by-construction IAM policies
David DanksCarnegie Mellon UniversityAn integrated framework for understanding human-AI hybrid decision-making
Suhas DiggaviUniversity of California, Los AngelesCompressed private and secure distributed edge learning
Greg DurrettUniversity of Texas At AustinMaking conditional text generation fair and factual
Sergio EscaleraUniversitat de Barcelona and Computer Vision CenterPortable virtual try-on for smart devices
Jan FaiglCzech Technical University in PragueCommunication maps building in subterranean environments
Pietro FerraraCa' Foscari University of VeniceIAM access control policies verification and inference
Katerina FragkiadakiCarnegie Mellon UniversityGeneralizing manipulation across objects, configurations and views using a visually-grounded library of behaviors
Guillermo GallegoTechnical University of BerlinOnline in-hand object tracking and grasp failure detection with an event-based camera
Grace GaoStanford UniversityTrustworthy autonomous vehicle localization using a joint model-driven and data-driven approach
Stephanie GilHarvard UniversityEnabling the next generation of coordinated robots: scalable real-time decision making
Luca GiuggioliUniversity of BristolMulti-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering
Jorge GoncalvesUniversity of MelbourneIntegrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks
Ananth GramaPurdue University—West LafayetteScaling causal inference to explainable clinical recommendations
Grace GuUniversity of California, BerkeleySurrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices
Ronghui GuColumbia UniversityMicroverification of the Linux KVM hypervisor: proving VM confidentiality and integrity
Aarti GuptaPrinceton UniversityLearning abstract specifications from distributed program implementations
Saurabh GuptaUniversity of Illinois Urbana-ChampaignSelf-supervised discovery of object states and transitions from unlabeled videos
Daniel HaraborMonash UniversityAnytime constraint-based multi-agent pathfinding
Hynek HermanskyJohns Hopkins UniversityMultistream lifelong federated learning for machine recognition of speech
Bin HuUniversity of Illinois Urbana-ChampaignProvably robust adversarial reinforcement learning for sequential decision making in safety-critical environments
Lifu HuangVirginia TechEvent-centric temporal and causal knowledge acquisition and generalization for natural language understanding
Dinesh JayaramanUniversity of PennsylvaniaLearning modular dynamics models for plug-and-play visual control
Sven KoenigUniversity of Southern CaliforniaImproving planning and plan execution for warehouse automation
Laura KovacsTU WienFOREST: first-order reasoning for ensuring system security
Arun KumarUniversity of California, San DiegoImproving automated feature type inference for AutoML on tabular data
Himabindu LakkarajuHarvard UniversityTowards reliable and robust model explanations
Kevin Leyton-BrownUniversity of British ColumbiaAutomated machine learning for tabular datasets using hyperband embedded reinforcement learning
Bo LiUniversity of Illinois Urbana-ChampaignMachine learning evaluation as a service for robustness, fairness, and privacy utilities
Ke LiUniversity of ExeterMany hands make work light: multi-task deep semantic learning for testing web application firewalls
Zhiqiang LinOhio State UniversityType-aware recovery of symbol names in binary code: a machine learning based approach
Jeffrey LiuMassachusetts Institute of TechnologyIntegrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum
Michael MahoneyUniversity of California, BerkeleySystematic methods for efficient inference and training of neural networks
Radu MarculescuUniversity of TexasNew directions for 3D object detection: distributed inference on edge devices using knowledge distillation
Ruben MartinsCarnegie Mellon UniversityImproving performance and trust of MaxSAT solvers
Jiri MatasCzech Technical University in PragueTraining neural networks on non-differentiable losses
Michael MilfordQueensland University of TechnologyComplementarity-aware multi-process fusion for long term localization
Heather MillerCarnegie Mellon UniversityDirected automated explicit-state model checking for distributed applications
Ndapa NakasholeUniversity of California, San DiegoLearning representations for voice-based conversational agents for older adults
Shrikanth NarayananUniversity of Southern CaliforniaToward inclusive human-AI conversational experiences for children
Lerrel PintoNew York UniversityLearning to manipulate deformable objects through robust simulations
Ravi RamamoorthiUniversity of California, San DiegoSparse multi-view object acquisition using learned volumetric representations
Philip ResnikUniversity of Maryland, College ParkAdvanced topic modeling to support the understanding of COVID-19 and its effects
Daniela RusMassachusetts Institute of TechnologyLearning to plan through imagined self-play for multi-agent system
Supreeth ShashikumarUniversity of California, San DiegoPrivacy preserving continual learning with applications to critical care
Robert ShepherdCornell UniversityEnduring and adaptive robots via electrochemical blood
Cong ShiUniversity of Michigan, Ann ArborMachine learning for personalized assortment optimization
Florian ShkurtiUniversity of TorontoGenerating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators
Abhinav ShrivastavaUniversity of Maryland, College ParkThe pursuit of knowledge: discovering and localizing new concepts using dual memory
Roland SiegwartETH ZurichSafe self-calibration of hybrid aerial vehicles
Sameer SinghUniversity of California, IrvineDetecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence
Noah SmithUniversity of Washington - SeattleLanguage model customization
Mahdi SoltanolkotabiUniversity of Southern CaliforniaArtificial intelligence for fast and portable medical imaging (with limited training data)
Seung Woo SonUniversity of Massachusetts LowellReliable and accurate anomaly detection in edge nodes using sparsity profile
Dawn SongUniversity of California, BerkeleyKnowledge-enhanced cyber threat hunting
Dezhen SongTexas A&M University, College StationOptoacoustic material and structure pretouch sensing at robot fingertip
Shuran SongColumbia UniversityDexterity through diversity:learning a generalizable grasping policy for diverse end-effectors
Yizhou SunUniversity of California, Los AngelesAccelerating graph neural network training
Russ TedrakeMassachusetts Institute of TechnologyIntuitive physics for manipulation
James TompkinBrown UniversityReal-time multi-camera fusion for unoccluded VR robot teleoperation
Emina TorlakUniversity of Washington - SeattleAutomated verification of JIT compilers for BPF
Marynel VazquezYale UniversityEvaluating social robot navigation via online human-driven simulations
Nisheeth VishnoiYale UniversityFair and error-resilient algorithms for AI and ML
Gang WangUniversity of Illinois at Urbana–ChampaignCombating concept drift in security applications via proactive data synthesis
Hao WangRutgers University-New BrunswickStructured domain adaptation with applications to personalization and forecasting
James WangPennsylvania State UniversityAffective and social interaction between human and intelligent machine
Gloria WashingtonHoward UniversityTowards identification of uncomfortable speech in conversations
Chuan WuThe University of Hong KongCompilation optimization in distributed DNN training: joining OP and tensor fusion/partition
Eugene WuColumbia UniversityHuman-in-the-loop data debugging for ML-oriented analytics
Jiajun WuStanford UniversityImplicit dynamic scene representation learning for robotics
Ming-Ru WuDana-Farber Cancer InstituteFrom bench to clinic – machine-learning based cancer immunotherapy design
Diyi YangGeorgia Institute of TechnologyAbstractive conversation summarization at scale
Sixian YouMassachusetts Institute of TechnologyAI-driven label-free histology for cancer diagnosis
Jingjin YuRutgers University-New BrunswickPushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics
Rui ZhangPennsylvania State UniversityBuilding robust conversational question answering systems over databases of tabular data
Yu ZhangUniversity of South FloridaDesign of an automated advanced air mobility flight planning system (AAFPS)
Yuke ZhuUniversity of Texas at AustinLearning implicit shape affordance for grasping and manipulation
Marinka ZitnikHarvard UniversityActionable graph learning for finding cures for emerging diseases
James ZouStanford UniversityHow to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.