2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

RecipientUniversityResearch title
Vikram AdveUniversity of Illinois Urbana-ChampaignExtending the LLVM compiler infrastructure for tensor architectures
Pulkit AgrawalMassachusetts Institute of TechnologyA framework for multi-step planning for manipulating rigid objects
Ron AlterovitzUniversity of North Carolina at Chapel HillCloud-based motion planning: an enabling technology for next-generation autonomous robots
Jimmy BaUniversity of TorontoModel-based reinforcement learning with causal world models
Saurabh BagchiPurdue University—West LafayetteContent and contention-aware approximate streaming video analytics for edge devices
David Baker EffendiStellenbosch UniversityDataflow analysis using code property graphs, graph databases and synchronized pushdown systems
Sivaraman BalakrishnanCarnegie Mellon UniversityFoundations of robust machine learning: from principled approaches to practice
Elias BareinboimColumbia UniversityOff-policy evaluation through causal modeling
Clark BarrettStanford UniversityModel-based testing of SMT solvers
Lars BirkedalAarhus UniversityModular reasoning about distributed systems: higher-order distributed separation logic
David BleiColumbia UniversityNew directions in observational causal inference
Eric BoddenPaderborn UniversityHybridCG — dynamically-enriched call-Graph generation of Java enterprise applications
Legand BurgeHoward UniversityVoice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions
James CaverleeTexas A&M University, College StationFairness in recommendation without demographics
Changyou ChenUniversity at BuffaloScaling up human-action analysis systems
Danqi ChenPrinceton UniversityBuilding broad-coverage, structured dense knowledge bases for natural language processing tasks
Helen ChenUniversity of WaterlooOptimizing pretrained clinical embeddings for automatic COVID-related ICD coding
Yiran ChenDuke UniversityPrivacy-preserving representation learning on graphs — a mutual information perspective
Margarita ChliETH ZurichVision-based emergency landing in urban environments using reinforcement learning and deep learning
Kyunghyun ChoNew York UniversityIndependently controllable attributes for controllable neural text generation
Carlo CilibertoUniversity College LondonOptimal transport for meta-learning
Loris D'AntoniUniversity of Wisconsin–MadisonCorrect-by-construction IAM policies
David DanksCarnegie Mellon UniversityAn integrated framework for understanding human-AI hybrid decision-making
Suhas DiggaviUniversity of California, Los AngelesCompressed private and secure distributed edge learning
Greg DurrettUniversity of Texas At AustinMaking conditional text generation fair and factual
Sergio EscaleraUniversitat de Barcelona and Computer Vision CenterPortable virtual try-on for smart devices
Jan FaiglCzech Technical University in PragueCommunication maps building in subterranean environments
Pietro FerraraCa' Foscari University of VeniceIAM access control policies verification and inference
Katerina FragkiadakiCarnegie Mellon UniversityGeneralizing manipulation across objects, configurations and views using a visually-grounded library of behaviors
Guillermo GallegoTechnical University of BerlinOnline in-hand object tracking and grasp failure detection with an event-based camera
Grace GaoStanford UniversityTrustworthy autonomous vehicle localization using a joint model-driven and data-driven approach
Stephanie GilHarvard UniversityEnabling the next generation of coordinated robots: scalable real-time decision making
Luca GiuggioliUniversity of BristolMulti-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering
Jorge GoncalvesUniversity of MelbourneIntegrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks
Ananth GramaPurdue University—West LafayetteScaling causal inference to explainable clinical recommendations
Grace GuUniversity of California, BerkeleySurrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices
Ronghui GuColumbia UniversityMicroverification of the Linux KVM hypervisor: proving VM confidentiality and integrity
Aarti GuptaPrinceton UniversityLearning abstract specifications from distributed program implementations
Saurabh GuptaUniversity of Illinois Urbana-ChampaignSelf-supervised discovery of object states and transitions from unlabeled videos
Daniel HaraborMonash UniversityAnytime constraint-based multi-agent pathfinding
Hynek HermanskyJohns Hopkins UniversityMultistream lifelong federated learning for machine recognition of speech
Bin HuUniversity of Illinois Urbana-ChampaignProvably robust adversarial reinforcement learning for sequential decision making in safety-critical environments
Lifu HuangVirginia TechEvent-centric temporal and causal knowledge acquisition and generalization for natural language understanding
Dinesh JayaramanUniversity of PennsylvaniaLearning modular dynamics models for plug-and-play visual control
Sven KoenigUniversity of Southern CaliforniaImproving planning and plan execution for warehouse automation
Laura KovacsTU WienFOREST: first-order reasoning for ensuring system security
Arun KumarUniversity of California, San DiegoImproving automated feature type inference for AutoML on tabular data
Himabindu LakkarajuHarvard UniversityTowards reliable and robust model explanations
Kevin Leyton-BrownUniversity of British ColumbiaAutomated machine learning for tabular datasets using hyperband embedded reinforcement learning
Bo LiUniversity of Illinois Urbana-ChampaignMachine learning evaluation as a service for robustness, fairness, and privacy utilities
Ke LiUniversity of ExeterMany hands make work light: multi-task deep semantic learning for testing web application firewalls
Zhiqiang LinOhio State UniversityType-aware recovery of symbol names in binary code: a machine learning based approach
Jeffrey LiuMassachusetts Institute of TechnologyIntegrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum
Michael MahoneyUniversity of California, BerkeleySystematic methods for efficient inference and training of neural networks
Radu MarculescuUniversity of TexasNew directions for 3D object detection: distributed inference on edge devices using knowledge distillation
Ruben MartinsCarnegie Mellon UniversityImproving performance and trust of MaxSAT solvers
Jiri MatasCzech Technical University in PragueTraining neural networks on non-differentiable losses
Michael MilfordQueensland University of TechnologyComplementarity-aware multi-process fusion for long term localization
Heather MillerCarnegie Mellon UniversityDirected automated explicit-state model checking for distributed applications
Ndapa NakasholeUniversity of California, San DiegoLearning representations for voice-based conversational agents for older adults
Shrikanth NarayananUniversity of Southern CaliforniaToward inclusive human-AI conversational experiences for children
Lerrel PintoNew York UniversityLearning to manipulate deformable objects through robust simulations
Ravi RamamoorthiUniversity of California, San DiegoSparse multi-view object acquisition using learned volumetric representations
Philip ResnikUniversity of Maryland, College ParkAdvanced topic modeling to support the understanding of COVID-19 and its effects
Daniela RusMassachusetts Institute of TechnologyLearning to plan through imagined self-play for multi-agent system
Supreeth ShashikumarUniversity of California, San DiegoPrivacy preserving continual learning with applications to critical care
Robert ShepherdCornell UniversityEnduring and adaptive robots via electrochemical blood
Cong ShiUniversity of Michigan, Ann ArborMachine learning for personalized assortment optimization
Florian ShkurtiUniversity of TorontoGenerating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators
Abhinav ShrivastavaUniversity of Maryland, College ParkThe pursuit of knowledge: discovering and localizing new concepts using dual memory
Roland SiegwartETH ZurichSafe self-calibration of hybrid aerial vehicles
Sameer SinghUniversity of California, IrvineDetecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence
Noah SmithUniversity of Washington - SeattleLanguage model customization
Mahdi SoltanolkotabiUniversity of Southern CaliforniaArtificial intelligence for fast and portable medical imaging (with limited training data)
Seung Woo SonUniversity of Massachusetts LowellReliable and accurate anomaly detection in edge nodes using sparsity profile
Dawn SongUniversity of California, BerkeleyKnowledge-enhanced cyber threat hunting
Dezhen SongTexas A&M University, College StationOptoacoustic material and structure pretouch sensing at robot fingertip
Shuran SongColumbia UniversityDexterity through diversity:learning a generalizable grasping policy for diverse end-effectors
Yizhou SunUniversity of California, Los AngelesAccelerating graph neural network training
Russ TedrakeMassachusetts Institute of TechnologyIntuitive physics for manipulation
James TompkinBrown UniversityReal-time multi-camera fusion for unoccluded VR robot teleoperation
Emina TorlakUniversity of Washington - SeattleAutomated verification of JIT compilers for BPF
Marynel VazquezYale UniversityEvaluating social robot navigation via online human-driven simulations
Nisheeth VishnoiYale UniversityFair and error-resilient algorithms for AI and ML
Gang WangUniversity of Illinois at Urbana–ChampaignCombating concept drift in security applications via proactive data synthesis
Hao WangRutgers University-New BrunswickStructured domain adaptation with applications to personalization and forecasting
James WangPennsylvania State UniversityAffective and social interaction between human and intelligent machine
Gloria WashingtonHoward UniversityTowards identification of uncomfortable speech in conversations
Chuan WuThe University of Hong KongCompilation optimization in distributed DNN training: joining OP and tensor fusion/partition
Eugene WuColumbia UniversityHuman-in-the-loop data debugging for ML-oriented analytics
Jiajun WuStanford UniversityImplicit dynamic scene representation learning for robotics
Ming-Ru WuDana-Farber Cancer InstituteFrom bench to clinic – machine-learning based cancer immunotherapy design
Diyi YangGeorgia Institute of TechnologyAbstractive conversation summarization at scale
Sixian YouMassachusetts Institute of TechnologyAI-driven label-free histology for cancer diagnosis
Jingjin YuRutgers University-New BrunswickPushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics
Rui ZhangPennsylvania State UniversityBuilding robust conversational question answering systems over databases of tabular data
Yu ZhangUniversity of South FloridaDesign of an automated advanced air mobility flight planning system (AAFPS)
Yuke ZhuUniversity of Texas at AustinLearning implicit shape affordance for grasping and manipulation
Marinka ZitnikHarvard UniversityActionable graph learning for finding cures for emerging diseases
James ZouStanford UniversityHow to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Bellevue
Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.