2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

RecipientUniversityResearch title
Vikram AdveUniversity of Illinois Urbana-ChampaignExtending the LLVM compiler infrastructure for tensor architectures
Pulkit AgrawalMassachusetts Institute of TechnologyA framework for multi-step planning for manipulating rigid objects
Ron AlterovitzUniversity of North Carolina at Chapel HillCloud-based motion planning: an enabling technology for next-generation autonomous robots
Jimmy BaUniversity of TorontoModel-based reinforcement learning with causal world models
Saurabh BagchiPurdue University—West LafayetteContent and contention-aware approximate streaming video analytics for edge devices
David Baker EffendiStellenbosch UniversityDataflow analysis using code property graphs, graph databases and synchronized pushdown systems
Sivaraman BalakrishnanCarnegie Mellon UniversityFoundations of robust machine learning: from principled approaches to practice
Elias BareinboimColumbia UniversityOff-policy evaluation through causal modeling
Clark BarrettStanford UniversityModel-based testing of SMT solvers
Lars BirkedalAarhus UniversityModular reasoning about distributed systems: higher-order distributed separation logic
David BleiColumbia UniversityNew directions in observational causal inference
Eric BoddenPaderborn UniversityHybridCG — dynamically-enriched call-Graph generation of Java enterprise applications
Legand BurgeHoward UniversityVoice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions
James CaverleeTexas A&M University, College StationFairness in recommendation without demographics
Changyou ChenUniversity at BuffaloScaling up human-action analysis systems
Danqi ChenPrinceton UniversityBuilding broad-coverage, structured dense knowledge bases for natural language processing tasks
Helen ChenUniversity of WaterlooOptimizing pretrained clinical embeddings for automatic COVID-related ICD coding
Yiran ChenDuke UniversityPrivacy-preserving representation learning on graphs — a mutual information perspective
Margarita ChliETH ZurichVision-based emergency landing in urban environments using reinforcement learning and deep learning
Kyunghyun ChoNew York UniversityIndependently controllable attributes for controllable neural text generation
Carlo CilibertoUniversity College LondonOptimal transport for meta-learning
Loris D'AntoniUniversity of Wisconsin–MadisonCorrect-by-construction IAM policies
David DanksCarnegie Mellon UniversityAn integrated framework for understanding human-AI hybrid decision-making
Suhas DiggaviUniversity of California, Los AngelesCompressed private and secure distributed edge learning
Greg DurrettUniversity of Texas At AustinMaking conditional text generation fair and factual
Sergio EscaleraUniversitat de Barcelona and Computer Vision CenterPortable virtual try-on for smart devices
Jan FaiglCzech Technical University in PragueCommunication maps building in subterranean environments
Pietro FerraraCa' Foscari University of VeniceIAM access control policies verification and inference
Katerina FragkiadakiCarnegie Mellon UniversityGeneralizing manipulation across objects, configurations and views using a visually-grounded library of behaviors
Guillermo GallegoTechnical University of BerlinOnline in-hand object tracking and grasp failure detection with an event-based camera
Grace GaoStanford UniversityTrustworthy autonomous vehicle localization using a joint model-driven and data-driven approach
Stephanie GilHarvard UniversityEnabling the next generation of coordinated robots: scalable real-time decision making
Luca GiuggioliUniversity of BristolMulti-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering
Jorge GoncalvesUniversity of MelbourneIntegrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks
Ananth GramaPurdue University—West LafayetteScaling causal inference to explainable clinical recommendations
Grace GuUniversity of California, BerkeleySurrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices
Ronghui GuColumbia UniversityMicroverification of the Linux KVM hypervisor: proving VM confidentiality and integrity
Aarti GuptaPrinceton UniversityLearning abstract specifications from distributed program implementations
Saurabh GuptaUniversity of Illinois Urbana-ChampaignSelf-supervised discovery of object states and transitions from unlabeled videos
Daniel HaraborMonash UniversityAnytime constraint-based multi-agent pathfinding
Hynek HermanskyJohns Hopkins UniversityMultistream lifelong federated learning for machine recognition of speech
Bin HuUniversity of Illinois Urbana-ChampaignProvably robust adversarial reinforcement learning for sequential decision making in safety-critical environments
Lifu HuangVirginia TechEvent-centric temporal and causal knowledge acquisition and generalization for natural language understanding
Dinesh JayaramanUniversity of PennsylvaniaLearning modular dynamics models for plug-and-play visual control
Sven KoenigUniversity of Southern CaliforniaImproving planning and plan execution for warehouse automation
Laura KovacsTU WienFOREST: first-order reasoning for ensuring system security
Arun KumarUniversity of California, San DiegoImproving automated feature type inference for AutoML on tabular data
Himabindu LakkarajuHarvard UniversityTowards reliable and robust model explanations
Kevin Leyton-BrownUniversity of British ColumbiaAutomated machine learning for tabular datasets using hyperband embedded reinforcement learning
Bo LiUniversity of Illinois Urbana-ChampaignMachine learning evaluation as a service for robustness, fairness, and privacy utilities
Ke LiUniversity of ExeterMany hands make work light: multi-task deep semantic learning for testing web application firewalls
Zhiqiang LinOhio State UniversityType-aware recovery of symbol names in binary code: a machine learning based approach
Jeffrey LiuMassachusetts Institute of TechnologyIntegrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum
Michael MahoneyUniversity of California, BerkeleySystematic methods for efficient inference and training of neural networks
Radu MarculescuUniversity of TexasNew directions for 3D object detection: distributed inference on edge devices using knowledge distillation
Ruben MartinsCarnegie Mellon UniversityImproving performance and trust of MaxSAT solvers
Jiri MatasCzech Technical University in PragueTraining neural networks on non-differentiable losses
Michael MilfordQueensland University of TechnologyComplementarity-aware multi-process fusion for long term localization
Heather MillerCarnegie Mellon UniversityDirected automated explicit-state model checking for distributed applications
Ndapa NakasholeUniversity of California, San DiegoLearning representations for voice-based conversational agents for older adults
Shrikanth NarayananUniversity of Southern CaliforniaToward inclusive human-AI conversational experiences for children
Lerrel PintoNew York UniversityLearning to manipulate deformable objects through robust simulations
Ravi RamamoorthiUniversity of California, San DiegoSparse multi-view object acquisition using learned volumetric representations
Philip ResnikUniversity of Maryland, College ParkAdvanced topic modeling to support the understanding of COVID-19 and its effects
Daniela RusMassachusetts Institute of TechnologyLearning to plan through imagined self-play for multi-agent system
Supreeth ShashikumarUniversity of California, San DiegoPrivacy preserving continual learning with applications to critical care
Robert ShepherdCornell UniversityEnduring and adaptive robots via electrochemical blood
Cong ShiUniversity of Michigan, Ann ArborMachine learning for personalized assortment optimization
Florian ShkurtiUniversity of TorontoGenerating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators
Abhinav ShrivastavaUniversity of Maryland, College ParkThe pursuit of knowledge: discovering and localizing new concepts using dual memory
Roland SiegwartETH ZurichSafe self-calibration of hybrid aerial vehicles
Sameer SinghUniversity of California, IrvineDetecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence
Noah SmithUniversity of Washington - SeattleLanguage model customization
Mahdi SoltanolkotabiUniversity of Southern CaliforniaArtificial intelligence for fast and portable medical imaging (with limited training data)
Seung Woo SonUniversity of Massachusetts LowellReliable and accurate anomaly detection in edge nodes using sparsity profile
Dawn SongUniversity of California, BerkeleyKnowledge-enhanced cyber threat hunting
Dezhen SongTexas A&M University, College StationOptoacoustic material and structure pretouch sensing at robot fingertip
Shuran SongColumbia UniversityDexterity through diversity:learning a generalizable grasping policy for diverse end-effectors
Yizhou SunUniversity of California, Los AngelesAccelerating graph neural network training
Russ TedrakeMassachusetts Institute of TechnologyIntuitive physics for manipulation
James TompkinBrown UniversityReal-time multi-camera fusion for unoccluded VR robot teleoperation
Emina TorlakUniversity of Washington - SeattleAutomated verification of JIT compilers for BPF
Marynel VazquezYale UniversityEvaluating social robot navigation via online human-driven simulations
Nisheeth VishnoiYale UniversityFair and error-resilient algorithms for AI and ML
Gang WangUniversity of Illinois at Urbana–ChampaignCombating concept drift in security applications via proactive data synthesis
Hao WangRutgers University-New BrunswickStructured domain adaptation with applications to personalization and forecasting
James WangPennsylvania State UniversityAffective and social interaction between human and intelligent machine
Gloria WashingtonHoward UniversityTowards identification of uncomfortable speech in conversations
Chuan WuThe University of Hong KongCompilation optimization in distributed DNN training: joining OP and tensor fusion/partition
Eugene WuColumbia UniversityHuman-in-the-loop data debugging for ML-oriented analytics
Jiajun WuStanford UniversityImplicit dynamic scene representation learning for robotics
Ming-Ru WuDana-Farber Cancer InstituteFrom bench to clinic – machine-learning based cancer immunotherapy design
Diyi YangGeorgia Institute of TechnologyAbstractive conversation summarization at scale
Sixian YouMassachusetts Institute of TechnologyAI-driven label-free histology for cancer diagnosis
Jingjin YuRutgers University-New BrunswickPushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics
Rui ZhangPennsylvania State UniversityBuilding robust conversational question answering systems over databases of tabular data
Yu ZhangUniversity of South FloridaDesign of an automated advanced air mobility flight planning system (AAFPS)
Yuke ZhuUniversity of Texas at AustinLearning implicit shape affordance for grasping and manipulation
Marinka ZitnikHarvard UniversityActionable graph learning for finding cures for emerging diseases
James ZouStanford UniversityHow to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: One Washington Park, Newark, NJ, 07102 Duties: Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3 / edX storage systems. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports into Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s in Statistics, Computer Science, Data Science, Machine Learning, Applied Math, Operations Research, Economics, or a related field plus two (2) years of experience as a Data Scientist, Data Engineer, or other occupation/position/job title involving research and data analysis. Experience may be gained concurrently and must include one (1) year in each of the following: - Building statistical models and machine learning models using large datasets from multiple resources - Working with Customer, Content, or Product data modeling and extraction - Using database technologies such as SQL or ETL - Applying specialized modelling software including Python, R, SAS, MATLAB, or Stata. Alternatively, will accept a Bachelor's and four (4) years of experience. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL157. We are open to hiring candidates to work out of one of the following locations: Newark, NJ, USA
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians on a mission to develop a fault-tolerant quantum computer. You will be joining a team located in Pasadena, CA that conducts materials research to improve the performance of quantum processors. We are looking to hire a Quantum Research Scientist who will apply their expertise in materials characterization to the optimization of fabricated superconducting quantum devices. In this role, you are expected to lead and assist research projects that are aligned with our Center’s technical roadmap. You will develop new ideas and design experiments aimed at identifying the most promising material systems, characterization techniques, and integration processes for superconducting circuit applications. Key job responsibilities - Conduct experimental studies on the fundamental properties of superconducting, semiconducting, and dielectric thin films - Develop and implement multi-technique materials characterization workflows for thin films and devices, with a focus on the surfaces and interfaces - Work closely with other research scientists on the Materials team to develop material processes directed toward optimizing thin film properties, controlling the surface chemistry and morphology, and impacting device performance - Identify materials properties (chemical, structural, electronic, electrical) that can be a reliable proxy for the performance of superconducting qubits and microwave resonators - Communicate engineering and scientific findings to teammates, the broader CQC and, when appropriate, publish findings in scientific journals A day in the life AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. About the team Our team contributes to the fabrication of processors and other hardware that enable quantum computing technologies. Doing that necessitates the development of materials with tailored properties for superconducting circuits. Research Scientists and Engineers on the Materials team operate deposition and characterization systems in order to develop and optimize thin film processes for use in these devices. They work alongside other Research Scientists and Engineers to help deliver fabricated devices for quantum computing experiments. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
US, CA, Sunnyvale
Help re-invent how millions of people watch TV! Fire TV remains the #1 best-selling streaming media player in the US. Our goal is to be the global leader in delivering entertainment inside and outside the home, with the broadest selection of content, devices and experiences for customers. Our science team works at the intersection of Recommender Systems, Information Retrieval, Machine Learning and Natural Language Understanding. We leverage techniques from all these fields to create novel algorithms that allow our customers to engage with the right content at the right time. Our work directly contributes to making our devices delightful to use and indispensable for the household. Key job responsibilities - Drive new initiatives applying Machine Learning techniques to improve our recommendation, search and entity matching algorithms - Perform hands-on data analysis and modeling with large data sets to develop insights that increase device usage and customer experience - Design and run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Setup and monitor alarms to detect anomalous data patterns and perform root cause analyses to explain and address them - Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences - Help attract and recruit technical talent; mentor junior scientists We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, NY, New York
Amazon is looking for a Senior Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase reliable access to supply, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As a Senior Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Senior Applied Scientist you will: - Lead a team of scientists to innovate on state-of-the-art sourcing systems. - Set the scientific strategic vision for the team. You lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents. To help describe some of our challenges, we created a short video about SCOT at Amazon: http://bit.ly/amazon-scot About the team Supply Chain Optimization Technologies (SCOT) owns Amazon's global inventory planning systems. We decide what, when, where, and how much we should buy to meet Amazon's business goals and to make our customers happy. We decide how to place and move inventory within Amazon's fulfillment network. We do this for hundreds of millions of items and hundreds of product lines worth billions of dollars worldwide. Check our website if you are curious to learn more about the breadth of problems we tackle: https://www.amazon.science/tag/supply-chain-optimization-technologies We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | New York, NY, USA
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. We are seeking a Senior Applied Scientist who has a solid background in applied Machine Learning and Data Science, deep passion for building data-driven products, ability to formulate data insights and scientific vision, and has a proven track record of executing complex projects and delivering business impact. Key job responsibilities • Data driven insights to accelerate acquisition of new members. • Grow benefits adoption based on customer segment, vertical, and drive customers to their "aha moment". • Work closely with software engineering teams to drive model implementations and new feature creations. • Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation • Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Mentor junior scientists, provide technical and career development guidance. About the team The Marketing Science team applies scientific methods and research techniques to enhance our understanding of AB consumer behavior, market trends, and the effectiveness of marketing strategies. Our goal is to develop and advance theories and models that can be used to make informed decisions in marketing and to provide insights into consumer decision-making processes. Additionally, we seek to identify and explore emerging trends and technologies in marketing, and to develop innovative approaches for addressing the challenges and opportunities in the field. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you fascinated by the use of Generative AI to build an advertiser facing solution that predict problems and coach users while they solve real word problems? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the customer service space? If so, Amazon's Support Product & Services (SP&S) team has an exciting opportunity for you as an Applied Scientist. Key job responsibilities • Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the advertising support center domain. • Use Transformers and apply other NLP techniques like Sentence embeddings, Dimensionality reduction, clustering and topic modeling to identify customer intents and utterances. • Use services like AWS Lex, AWS Bedrock etc. to develop advertising facing solutions • Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful solutions. • Automating feedback loops for algorithms in production. • Setup and monitor alarms to detect anomalous data patterns and perform root cause analyses to explain and address them. • Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences. A day in the life You will work closely with a cross functional team of Software Engineers, Product Owners, Data Scientists, and Contact Center experts. You will research and investigate the latest options in industry to apply machine learning and generative AI to real world problems. You will work backwards from customer problems and collaborate with stakeholders to determine how to scale new technology and integrate with complicated help channels used by advertisers everyday. About the team SP&S team provides solutions and libraries that are leveraged by teams all across Amazon Advertising to provide timely and personalized help. The team aims to predict Advertisers problems and proactively surface intelligent guidance to customers at the right time. As a AS, you will help the team to achieve its vision of building and implementing the next generation of Contact Center technology. You will build/leverage LLMs to train them on advertising support domain knowledge and work shoulder to shoulder with stakeholders to externalize to users in novel ways. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
US, WA, Seattle
Amazon brings buyers and sellers together. Our retail customers depend on us to give them access to every product at the best possible price. Our sellers depend on us to give them a platform to launch their business into every home and marketplace. Making this happen is the mission of every scientist in North America Stores (NAS) organization. To this end, the Science team is tasked with: · Building and deploying AI / ML models that lead to exponential growth of the business. · Organizing available data sources, and creating detailed dictionaries of data that can be used in future analyses. · Partnering with product teams in evaluating the financial and operational impact of new product offerings. · Partnering with science teams across other organizations to develop state of the art algorithms and models. · Carrying out independent data-backed initiatives that can be leveraged later on in the fields of network organization, costing and financial modeling of processes. · Publishing papers in both internal and external conferences / journals. In order to execute the above mandate we are on the look out for smart and qualified Applied Scientists who will own projects in partnership with product and research teams as well as operate autonomously on independent initiatives that are expected to unlock benefits in the future. A past background in Artificial Intelligence is necessary, along with advanced proficiency in programming languages such as Python and C++. Key job responsibilities As an Applied Scientist, you are able to use a range of artificial intelligence and operations research methodologies to solve challenging business problems when the solution is unclear. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as Redshift, Sagemaker, Lambda, S3, and EC2 with a variety of skillsets in Tabular ML, NLP, Generative AI, Forecasting, Probabilistic ML and Causal ML. You will bring knowledge in many of these domains along with your own specialties and skill-sets. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Seattle, WA, USA