2020 Amazon Research Awards recipients announced

ARA funds nearly twice as many awards as in previous year; 100 award recipients represent 59 universities in 13 countries.

In March 2021, Amazon notified applicants that they were recipients of the 2020 Amazon Research Awards, a program that provides unrestricted funds and AWS Promotional Credits to academic researchers investigating research topics across a number of disciplines.

Today, we’re publicly announcing the 100 award recipients who represent 59 universities in 13 countries. This round, ARA received a record number of submissions and funded nearly twice as many awards as the previous year. Each award is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

ARA is funding awards under five call for proposals: AI for Information Security, Alexa Fairness in AI, AWS AI, AWS Automated Reasoning, and Robotics. Proposals were reviewed for the quality of their scientific content, their creativity, and their potential to impact both the research community, and society more generally. Theoretical advances, creative new ideas, and practical applications were all considered.

Recipients have access to more than 200 Amazon public datasets, and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

“The 2020 Amazon Research Awards recipients represent a distinguished array of academic researchers who are pursuing research across areas such as ML algorithms and theory, fairness in AI, computer vision, natural language processing, edge computing, and medical research,” said Bratin Saha, vice president of AWS Machine Learning Services. “We are excited by the depth and breadth of their proposals, as well as the opportunity to advance the science through strengthened connections among academic researchers, their institutions, and our research teams.”

“As we enter into this golden age of robotics, we do so with our university partners. Not only are they shaping what is possible in robotics, they are inspiring many next- generation roboticists with their incredible creations and front-line teachings,” said Tye Brady, chief technologist for Amazon Robotics. “Our grant recipients are not only pursuing cutting-edge research that will benefit society, but perhaps more importantly are helping students from across the globe pursue a career in science and engineering.”

ARA funds proposals up to four times a year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

Below is the list of 2020 award recipients, presented in alphabetical order.

RecipientUniversityResearch title
Vikram AdveUniversity of Illinois Urbana-ChampaignExtending the LLVM compiler infrastructure for tensor architectures
Pulkit AgrawalMassachusetts Institute of TechnologyA framework for multi-step planning for manipulating rigid objects
Ron AlterovitzUniversity of North Carolina at Chapel HillCloud-based motion planning: an enabling technology for next-generation autonomous robots
Jimmy BaUniversity of TorontoModel-based reinforcement learning with causal world models
Saurabh BagchiPurdue University—West LafayetteContent and contention-aware approximate streaming video analytics for edge devices
David Baker EffendiStellenbosch UniversityDataflow analysis using code property graphs, graph databases and synchronized pushdown systems
Sivaraman BalakrishnanCarnegie Mellon UniversityFoundations of robust machine learning: from principled approaches to practice
Elias BareinboimColumbia UniversityOff-policy evaluation through causal modeling
Clark BarrettStanford UniversityModel-based testing of SMT solvers
Lars BirkedalAarhus UniversityModular reasoning about distributed systems: higher-order distributed separation logic
David BleiColumbia UniversityNew directions in observational causal inference
Eric BoddenPaderborn UniversityHybridCG — dynamically-enriched call-Graph generation of Java enterprise applications
Legand BurgeHoward UniversityVoice-FAQ: artificial intelligence for triaging cognitive decline through modeling vocal prosody and facial expressions
James CaverleeTexas A&M University, College StationFairness in recommendation without demographics
Changyou ChenUniversity at BuffaloScaling up human-action analysis systems
Danqi ChenPrinceton UniversityBuilding broad-coverage, structured dense knowledge bases for natural language processing tasks
Helen ChenUniversity of WaterlooOptimizing pretrained clinical embeddings for automatic COVID-related ICD coding
Yiran ChenDuke UniversityPrivacy-preserving representation learning on graphs — a mutual information perspective
Margarita ChliETH ZurichVision-based emergency landing in urban environments using reinforcement learning and deep learning
Kyunghyun ChoNew York UniversityIndependently controllable attributes for controllable neural text generation
Carlo CilibertoUniversity College LondonOptimal transport for meta-learning
Loris D'AntoniUniversity of Wisconsin–MadisonCorrect-by-construction IAM policies
David DanksCarnegie Mellon UniversityAn integrated framework for understanding human-AI hybrid decision-making
Suhas DiggaviUniversity of California, Los AngelesCompressed private and secure distributed edge learning
Greg DurrettUniversity of Texas At AustinMaking conditional text generation fair and factual
Sergio EscaleraUniversitat de Barcelona and Computer Vision CenterPortable virtual try-on for smart devices
Jan FaiglCzech Technical University in PragueCommunication maps building in subterranean environments
Pietro FerraraCa' Foscari University of VeniceIAM access control policies verification and inference
Katerina FragkiadakiCarnegie Mellon UniversityGeneralizing manipulation across objects, configurations and views using a visually-grounded library of behaviors
Guillermo GallegoTechnical University of BerlinOnline in-hand object tracking and grasp failure detection with an event-based camera
Grace GaoStanford UniversityTrustworthy autonomous vehicle localization using a joint model-driven and data-driven approach
Stephanie GilHarvard UniversityEnabling the next generation of coordinated robots: scalable real-time decision making
Luca GiuggioliUniversity of BristolMulti-robot online exploration in extreme unbounded environments through adaptive socio-spatial ordering
Jorge GoncalvesUniversity of MelbourneIntegrated qualification test framework to measure crowd worker quality and assign or recommend heterogeneous tasks
Ananth GramaPurdue University—West LafayetteScaling causal inference to explainable clinical recommendations
Grace GuUniversity of California, BerkeleySurrogate machine learning model and quasi-static simulation of pneumatically actuated robotic devices
Ronghui GuColumbia UniversityMicroverification of the Linux KVM hypervisor: proving VM confidentiality and integrity
Aarti GuptaPrinceton UniversityLearning abstract specifications from distributed program implementations
Saurabh GuptaUniversity of Illinois Urbana-ChampaignSelf-supervised discovery of object states and transitions from unlabeled videos
Daniel HaraborMonash UniversityAnytime constraint-based multi-agent pathfinding
Hynek HermanskyJohns Hopkins UniversityMultistream lifelong federated learning for machine recognition of speech
Bin HuUniversity of Illinois Urbana-ChampaignProvably robust adversarial reinforcement learning for sequential decision making in safety-critical environments
Lifu HuangVirginia TechEvent-centric temporal and causal knowledge acquisition and generalization for natural language understanding
Dinesh JayaramanUniversity of PennsylvaniaLearning modular dynamics models for plug-and-play visual control
Sven KoenigUniversity of Southern CaliforniaImproving planning and plan execution for warehouse automation
Laura KovacsTU WienFOREST: first-order reasoning for ensuring system security
Arun KumarUniversity of California, San DiegoImproving automated feature type inference for AutoML on tabular data
Himabindu LakkarajuHarvard UniversityTowards reliable and robust model explanations
Kevin Leyton-BrownUniversity of British ColumbiaAutomated machine learning for tabular datasets using hyperband embedded reinforcement learning
Bo LiUniversity of Illinois Urbana-ChampaignMachine learning evaluation as a service for robustness, fairness, and privacy utilities
Ke LiUniversity of ExeterMany hands make work light: multi-task deep semantic learning for testing web application firewalls
Zhiqiang LinOhio State UniversityType-aware recovery of symbol names in binary code: a machine learning based approach
Jeffrey LiuMassachusetts Institute of TechnologyIntegrating the low altitude disaster imagery (LADI) dataset into the MIT Beaver Works curriculum
Michael MahoneyUniversity of California, BerkeleySystematic methods for efficient inference and training of neural networks
Radu MarculescuUniversity of TexasNew directions for 3D object detection: distributed inference on edge devices using knowledge distillation
Ruben MartinsCarnegie Mellon UniversityImproving performance and trust of MaxSAT solvers
Jiri MatasCzech Technical University in PragueTraining neural networks on non-differentiable losses
Michael MilfordQueensland University of TechnologyComplementarity-aware multi-process fusion for long term localization
Heather MillerCarnegie Mellon UniversityDirected automated explicit-state model checking for distributed applications
Ndapa NakasholeUniversity of California, San DiegoLearning representations for voice-based conversational agents for older adults
Shrikanth NarayananUniversity of Southern CaliforniaToward inclusive human-AI conversational experiences for children
Lerrel PintoNew York UniversityLearning to manipulate deformable objects through robust simulations
Ravi RamamoorthiUniversity of California, San DiegoSparse multi-view object acquisition using learned volumetric representations
Philip ResnikUniversity of Maryland, College ParkAdvanced topic modeling to support the understanding of COVID-19 and its effects
Daniela RusMassachusetts Institute of TechnologyLearning to plan through imagined self-play for multi-agent system
Supreeth ShashikumarUniversity of California, San DiegoPrivacy preserving continual learning with applications to critical care
Robert ShepherdCornell UniversityEnduring and adaptive robots via electrochemical blood
Cong ShiUniversity of Michigan, Ann ArborMachine learning for personalized assortment optimization
Florian ShkurtiUniversity of TorontoGenerating physically realizable adversarial driving scenarios via differentiable physics and rendering simulators
Abhinav ShrivastavaUniversity of Maryland, College ParkThe pursuit of knowledge: discovering and localizing new concepts using dual memory
Roland SiegwartETH ZurichSafe self-calibration of hybrid aerial vehicles
Sameer SinghUniversity of California, IrvineDetecting and fixing vulnerabilities in NLP models via semantic perturbations and tracing data influence
Noah SmithUniversity of Washington - SeattleLanguage model customization
Mahdi SoltanolkotabiUniversity of Southern CaliforniaArtificial intelligence for fast and portable medical imaging (with limited training data)
Seung Woo SonUniversity of Massachusetts LowellReliable and accurate anomaly detection in edge nodes using sparsity profile
Dawn SongUniversity of California, BerkeleyKnowledge-enhanced cyber threat hunting
Dezhen SongTexas A&M University, College StationOptoacoustic material and structure pretouch sensing at robot fingertip
Shuran SongColumbia UniversityDexterity through diversity:learning a generalizable grasping policy for diverse end-effectors
Yizhou SunUniversity of California, Los AngelesAccelerating graph neural network training
Russ TedrakeMassachusetts Institute of TechnologyIntuitive physics for manipulation
James TompkinBrown UniversityReal-time multi-camera fusion for unoccluded VR robot teleoperation
Emina TorlakUniversity of Washington - SeattleAutomated verification of JIT compilers for BPF
Marynel VazquezYale UniversityEvaluating social robot navigation via online human-driven simulations
Nisheeth VishnoiYale UniversityFair and error-resilient algorithms for AI and ML
Gang WangUniversity of Illinois at Urbana–ChampaignCombating concept drift in security applications via proactive data synthesis
Hao WangRutgers University-New BrunswickStructured domain adaptation with applications to personalization and forecasting
James WangPennsylvania State UniversityAffective and social interaction between human and intelligent machine
Gloria WashingtonHoward UniversityTowards identification of uncomfortable speech in conversations
Chuan WuThe University of Hong KongCompilation optimization in distributed DNN training: joining OP and tensor fusion/partition
Eugene WuColumbia UniversityHuman-in-the-loop data debugging for ML-oriented analytics
Jiajun WuStanford UniversityImplicit dynamic scene representation learning for robotics
Ming-Ru WuDana-Farber Cancer InstituteFrom bench to clinic – machine-learning based cancer immunotherapy design
Diyi YangGeorgia Institute of TechnologyAbstractive conversation summarization at scale
Sixian YouMassachusetts Institute of TechnologyAI-driven label-free histology for cancer diagnosis
Jingjin YuRutgers University-New BrunswickPushing the limits of efficient and optimal multi-agent path finding through exploring space utilization optimization and adaptive planning horizon heuristics
Rui ZhangPennsylvania State UniversityBuilding robust conversational question answering systems over databases of tabular data
Yu ZhangUniversity of South FloridaDesign of an automated advanced air mobility flight planning system (AAFPS)
Yuke ZhuUniversity of Texas at AustinLearning implicit shape affordance for grasping and manipulation
Marinka ZitnikHarvard UniversityActionable graph learning for finding cures for emerging diseases
James ZouStanford UniversityHow to make AI forget you? Efficiently removing individuals’ data from machine learning models

Related content

US, VA, Herndon
Do you love decomposing problems to develop machine learning (ML) products that impact millions of people around the world? Would you enjoy identifying, defining, and building ML software solutions that revolutionize how businesses operate? The Global Practice Organization in Professional Services at Amazon Web Services (AWS) is looking for a Software Development Engineer II to build, deliver, and maintain complex ML products that delight our customers and raise our performance bar. You’ll design fault-tolerant systems that run at massive scale as we continue to innovate best-in-class services and applications in the AWS Cloud. Key job responsibilities Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also: - Solve complex technical problems, often ones not solved before, at every layer of the stack. - Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security. - Build high-quality, highly available, always-on products. - Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: - Build high-impact ML solutions to deliver to our large customer base. - Participate in design discussions, code review, and communicate with internal and external stakeholders. - Work cross-functionally to help drive business solutions with your technical input. - Work in a startup-like development environment, where you’re always working on the most important stuff. About the team The Global Practice Organization for Analytics is a team inside the AWS Professional Services Organization. Our mission in the Global Practice Organization is to be at the forefront of defining machine learning domain strategy, and ensuring the scale of Professional Services' delivery. We define strategic initiatives, provide domain expertise, and oversee the development of high-quality, repeatable offerings that accelerate customer outcomes. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 85,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life harmony. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here. We are a customer-obsessed organization—leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. As such, this is a customer facing role in a hybrid delivery model. Project engagements include remote delivery methods and onsite engagement that will include travel to customer locations as needed. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future. This is a customer-facing role and you will be required to travel to client locations and deliver professional services as needed. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Austin, TX, USA | Boston, MA, USA | Chicago, IL, USA | Herndon, VA, USA | Minneapolis, MN, USA | New York, NC, USA | San Diego, CA, USA | San Francisco, CA, USA | Seattle, WA, USA
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Seattle, WA, USA | Westborough, MA, USA
CA, BC, Vancouver
Amazon Web Services (AWS) is building a world-class marketing organization that drives awareness and customer engagement with the goal of educating developers, IT and line-of-business professionals, startups, partners, and executive decision makers about AWS services and solutions, their benefits, and differentiation. As the central data and science organization in AWS Marketing, the Data: Science and Engineering (D:SE) team builds measurement products, AI/ML models for targeting, and self-service insights capabilities for AWS Marketing to drive better measurement and personalization, improve data access and analytical self-service, and empower strategic data-driven decisions. We work globally as a central team and establish standards, benchmarks, and best practices for use throughout AWS Marketing. We are looking for a Principal Data Scientist with deep expertise in scaling measurement science, content ranking and rapid experimentation at scale, with strong interest in building scalable solutions in partnership with our engineering organization. You will lead strategic measurement science initiatives across AWS Marketing & Sales ranging anywhere between recommender engines, scaling experimentation and measurement science, real-time inference, and cross-channel orchestration. You are an hands-on innovator who can contribute to advancing Marketing measurement technology in a B2B environment, and push the limits on what’s scientifically possible with a razor sharp focus on measurable customer and business impact. You will work with recognized B2B Marketing Science and AI/ML experts to develop large-scale, high-performing measurement science models and AI/ML capabilities. We are at a pivotal moment in our organization where AI/ML and measurement velocity has reached an unseen momentum, and we need to scale fast in order to maintain it. Your work will be a key input into a few of our key business goals. You will advance the state of the art in measurement at scale. We are open to hiring candidates to work out of one of the following locations: Vancouver, BC, CAN
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities • Develop automated laboratory workflows. • Perform data QC, document results, and communicate to stakeholders. • Maintain updated understanding and knowledge of methods. • Identify and escalate equipment malfunctions; troubleshoot common errors. • Participate in the updating of protocols and database to accurately reflect the current practices. • Maintain equipment and instruments in good operating condition • Adapt to unexpected schedule changes and respond to emergency situations, as needed. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a Applied Scientist to focus on large vision and manipulation machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes using machine learning to drive hardware movement. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. About the team This team invents and runs robots focused on grasping and packing items. These are typically 6-dof style robotic arms. Our work ranges from the long-term-research on basic science to deploying/supporting large production fleets handling billions of items per year. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon launched the Generative AI (GenAI) Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA
US, VA, Arlington
Amazon’s mission is to be the most customer centric company in the world. The Workforce Staffing (WFS) organization is on the front line of that mission by hiring the hourly fulfillment associates who make that mission a reality. To drive the necessary growth and continued scale of Amazon’s associate needs within a constrained employment environment, Amazon has created the Workforce Intelligence (WFI) team. This team will (re)invent how Amazon attracts, communicates with, and ultimately hires its hourly associates. This team owns multi-layered research and program implementation to drive deep learning, process improvements, and strategic recommendations to global leadership. Are you passionate about data? Do you enjoy questioning the status quo? Do complex and difficult challenges excite you? If yes, this may be the team for you. The Data Scientist will be responsible for creating cutting edge algorithms, predictive and prescriptive models as well as required data models to facilitate WFS at-scale warehouse associate hiring. This role acts as an internal consultant to the marketing, biz ops and candidate experience teams covering responsibilities such as at-scale hiring process improvement, analyzing large scale candidate/associate data and being strategic to providing best candidate hiring experience to WFS warehouse associate candidates. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem at Amazon scale? Are you excited by developing and productionizing machine learning, deep learning algorithms and leveraging tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diverse set of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Virtual Try On (VTO) at Amazon Fashion & Fitness is looking for an exceptional Applied Scientist to join us to build our next generation virtual try on experience. Our goal is to help customers evaluate how products will fit and flatter their unique self before they ship, transforming customers' shopping into a personalized journey of inspiration, discovery, and evaluation. In this role, you will be responsible for building scalable computer vision and machine learning (CVML) models, and automating their application and expansion to power customer-facing features. Key job responsibilities - Tackle ambiguous problems in Computer Vision and Machine Learning, and drive full life-cycle of CV/ML projects. - Build Computer Vision, Machine Learning and Generative AI models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Investigate and solve exciting and difficult challenges in Image Generation, 3D Computer Vision, Generative AI, Image Understanding and Deep Learning. - Run A/B experiments, gather data, and perform statistical tests. - Lead development and productionalization of CV, ML, and Gen AI models and algorithms by working across teams. Deliver end to end. - Act as a mentor to other scientists on the team. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
At Amazon Fashion, we are obsessed with making Amazon Fashion the most loved fashion destinations globally. We're searching for Computer Vision pioneers who are passionate about technology, innovation, and customer experience, and who are enthusiastic about making a lasting impact on the industry. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey and change the world of eCommerce forever Key job responsibilities As a Applied Scientist, you will be at the forefront to define, own and drive the science that span multiple machine learning models and enabling multiple product/engineering teams and organizations. You will partner with product management and technical leadership to identify opportunities to innovate customer facing experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but more importantly influence strategy and outcomes across different Amazon organizations such as Search, Personalization and more. This role is inherently cross-functional and requires a strong ability to communicate, influence and earn the trust of software engineers, technical and business leadership. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA