Top row, left to right, Eshwar Ram Arunachaleswaran, Natalie Collina, Ziyang Li, Stephen Mell, and Georgy Noarov; second row, left to right, Artemis Panagopoulou, Jianing Qian, Alex Robey, Anton Xue, and Yahan Yang are the 10 PhD students whose research on fair and trustworthy AI is being supported by a gift from AWS.
Top row, left to right, Eshwar Ram Arunachaleswaran, Natalie Collina, Ziyang Li, Stephen Mell, and Georgy Noarov; and second row, left to right, Artemis Panagopoulou, Jianing Qian, Alex Robey, Anton Xue, and Yahan Yang are the 10 PhD students whose research on fair and trustworthy AI is being supported by a gift from AWS.

Amazon provides gift to 10 Penn engineering PhD students for work on trustworthy AI

Projects are centered around themes of fairness, privacy, explainability, and interpretability.

Today Amazon Web Services (AWS) announced it is providing a $700,000 gift to the University of Pennsylvania School of Engineering and Applied Science to support research on fair and trustworthy AI. The funds will be distributed to 10 PhD engineering students who are conducting research in that area.

A student is seen skateboarding toward the camera on the Penn Engineering campus, there are students walking behind him on a tree lined walk and there is a Penn Engineering banner hanging over the walkway
The Penn students receiving funding are conducting their research under the auspices of the ASSET Center, part of Penn Engineering’s IDEAS Initiative.
University of Pennsylvania

The students are conducting their research under the auspices of the ASSET (AI-Enabled Systems: Safe, Explainable and Trustworthy) Center, part of Penn Engineering’s Innovation in Data Engineering and Science (IDEAS) Initiative. ASSET’s mission is to advance “science and tools for developing AI-enabled data-driven engineering systems so that designers can guarantee that they are doing what they designed them to do and users can trust them to do what they expect them to do.”

“The ASSET Center is proud to receive Amazon’s support for these doctoral students working to ensure that systems relying on artificial intelligence are trustworthy,” said Rajeev Alur, the director of ASSET and the Zisman Family Professor in the Department of Computer and Information Science (CIS). “Penn’s interdisciplinary research teams lead the way in answering the core questions that will define the future of AI and its acceptance by society. How do we make sure that AI-enabled systems are safe? How can we give assurances and guarantees against harm? How should decisions made by AI be explained in ways that are understandable to stakeholders? How must AI algorithms be engineered to address concerns about privacy, fairness, and bias?”

“It’s great to collaborate with Penn on such important topics as trust, safety and interpretability,” said Stefano Soatto, vice president of applied science for Amazon Web Services (AWS) Artificial Intelligence (AI). “These are key to the long-term beneficial impact of AI, and Penn holds a leadership position in this area. I look forward to seeing the students’ work in action in the real world.”

The funded research projects are centered around themes of machine learning algorithms with fairness/privacy/robustness/safety guarantees; analysis of artificial intelligence-enabled systems for assurance; explainability and interpretability; neurosymbolic learning; and human-centric design.

Responsible AI
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

“This gift from AWS comes at an important time for research in responsible AI,” said Michael Kearns, an Amazon Scholar and the National Center Professor of Management & Technology. “Our students are hard at work creating the knowledge that industry requires for commercial technologies that will define so much of our lives, and it’s essential to invest in talented researchers focused on technically rigorous and socially engaged ways to use AI to our advantage.”

Below are the 10 students receiving funding and details on their research.

  • Eshwar Ram Arunachaleswaran is a second-year PhD student, advised by Sampath Kannan, the Henry Salvatori Professor in the Department of Computer and Information Science, and Anindya De, assistant professor of computer science. Arunachaleswaran’s research is focused on fairness notions and fair algorithms when individuals are classified by a network of classifiers, possibly with feedback.
  • Natalie Collina is a second-year PhD student, advised by Kearns and Aaron Roth, the Henry Salvatori Professor of Computer and Cognitive Science, who, like Kearns, is also an Amazon Scholar. Collina is investigating models for data markets, in which a seller might choose to add noise to query answers for both privacy and revenue purposes. Her goal is to put the study of markets for data on firm algorithmic and microeconomic foundations.
  • Ziyang Li is a fourth-year PhD student, advised by Mayur Naik, professor of computer science. Li is developing a programming language and open-source framework called Scallop for developing neurosymbolic AI applications. Li sees neurosymbolic AI as an emerging paradigm which seeks to integrate deep learning and classical algorithms in order to leverage the best of both worlds.
  • Stephen Mell is a fourth-year PhD student, advised by Osbert Bastani, an assistant professor at CIS, and Steve Zdancewic, Schlein Family President's Distinguished Professor and associate chair of CIS. Mell is currently studying how to make machine learning algorithms more robust and data efficient by leveraging neurosymbolic techniques. His goal is to design algorithms that can learn from just a handful of examples in safety-critical settings.
  • Georgy Noarov is a third-year PhD student, advised by Kearns and Roth. Noarov is studying means for uncertainty quantification of black-box machine learning models, including strong variants of calibration and conformal prediction.
  • Artemis Panagopoulou is a second-year PhD student, advised by Chris Callison-Burch, an associate professor in CIS, and Mark Yatskar, an assistant professor in CIS. Panagopoulou is designing explainable models for image classification using large language models to generate concepts used in classification. The goal of Panagopoulou's research is to produce more trustworthy AI systems by creating human-readable features that are faithfully used by the model during classification.
  • Jianing Qian is a third-year PhD student, advised by Dinesh Jayaraman, an assistant professor in CIS. Qian's research is focused on acquiring hierarchical object-centric visual representations that are interpretable to humans, and learning structured visuomotor control policies for robots that exploit these visual representations, through imitation and reinforcement learning.
  • Alex Robey is a third-year PhD student, advised by George Pappas, the UPS Foundation Professor and chair of the Department of Electrical and Systems Engineering, and Hamed Hassani, an assistant professor in the Department of Electrical and Systems Engineering. Robey is working on deep learning that is robust to distribution shifts due to natural variation, e.g. lighting, background changes, and weather changes.
  • Anton Xue is a fourth-year PhD student, advised by Alur. Xue’s research is focused on robustness and interpretability of deep learning. He is currently researching techniques to compare and analyze the effectiveness of methods for interpretable learning.
  • Yahan Yang is a third-year PhD student advised by Insup Lee, the Cecilia Fitler Moore Professor in the Department of Computer and Information Science and the director of PRECISE Center in the School of Engineering and Applied Science. Yang has been researching a two-stage classification technique, called memory classifiers, that can improve robustness of standard classifiers to distribution shifts. Her approach combines expert knowledge about the “high-level” structure of the data with standard classifiers.
Research areas

Related content

US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bangalore
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As a highly experienced and seasoned science leader, you will apply state of the art natural language processing and computer vision research to video centric digital media, while also responsible for creating and maintaining the best environment for applied science in order to recruit, retain and develop top talent. You will lead the research direction for a team of deeply talented applied scientists, creating the roadmaps for forward-looking research and communicate them effectively to senior leadership. You will also hire and develop applied scientists - growing the team to meet the evolving needs of our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment