A grid of 12 women scientists who were asked what three steps we can take as a society to forge a more gender-equal science community
As International Women's Day approached, we asked women scientists from research areas across the company what three steps we can take as a society to forge a more gender-equal science community.
Credit: Glynis Condon

How to forge a more gender-equal science community

International Women's Day is March 8 with the theme: #ChooseToChallenge.

International Women’s Day (IWD) is March 8, 2021. The day celebrates the social, economic, cultural and political achievements of women, and also denotes a call to action to accelerate gender parity. This year’s theme: #ChooseToChallenge.

“From challenge comes change, so let’s all choose to challenge,” says the IWD website.

As IWD approached, Amazon Science asked women scientists from research areas across the company what three steps we can take as a society to forge a more gender-equal science community. Below are their responses.

Bouchra Bouqata

Bouchra is a senior applied scientist within Amazon Robotics. She earned her PhD in machine learning and artificial intelligence from Rensselaer Polytechnic Institute.

  • Provide a clear pipeline for advancing and promoting women’s careers in science. Companies and institutions should adopt gender-balanced peer review promotion processes and committees.  They should also provide special funds and grants to help women scientists further their research and work.
  • Conferences and publishing venues should adopt gender-conscious peer-review committee, and speaker- selection committee recruitment processes.
  • Companies and institutions should commit to educating everyone, not just leadership, to combat the issues facing women in science. They should provide gender awareness training as a standard component of any training they provide to their employees and members. They should provide seminars and convene roundtable discussions on gender issues in science to facilitate communication and identification of solutions.

Nilay Noyan Bulbul

Nilay is a principal scientist within the company’s Supply Chain Optimization Technologies organization.  She earned her PhD in operations research from Rutgers University.

  • Call the gender disparity out: Identify where women scientists are marginalized, and call out the disparity to ensure fair representation at the leadership of scientific research and decision-making, as well as “invite-only” prestigious roles, such as keynote speaking engagements, prize juries, and journal editorial board memberships.
  • Invest in the future: Create more initiatives and opportunities for the next generation of women scientists via mentoring and targeted prize and research fund calls.
  • Keep everyone accountable: Make sure every entity working towards gender equality in science community has a tangible way to measure the “change” and keep track of the progress, and make the process transparent.”

Cindy Cui

Cindy is a senior economist within the Alexa Shopping organization. She earned her PhD in economics from the University of Texas at Austin.  

Role models, aspirations, and supportive community are most important factors to me. Growing up, my grandma taught me reading and math. I still remember the days when we would go through math problems and I felt happy and proud when I solved them correctly.

My grandma is also one of the few female teachers in her generation and always emphasizes the importance of education and hard work. In school, many smart female classmates encouraged and challenged me throughout.

It takes all of us to improve gender equality in science, doing our best and helping others along the way.

Donna Dodson

Donna is a senior principal technologist within the AWS Security organization. She earned her master’s degree in computer science from Hood College.

  • Build a culture that values deep thinkers who balance speaking and listening to others. Often the subculture’s voices — including women’s — are not heard.
  • Create compensation, incentives, benefits, resources, recognition and a flexible workplace that balance needs at different stages in life. Early- and mid-career scientists with families require flexibility for a work-life balance.
  • Recognize and promote diverse voices throughout K-12 science programs to empower girls to grow their confidence in science knowledge, skills and abilities

Maryam Fazel-Zarandi

Maryam is a senior machine learning scientist within the Alexa AI organization. She earned her PhD in computer science at the University of Toronto.

Maryam Fazel-zarandi
Maryam Fazel-Zarandi
Credit: Pierce Harman Photography

I have been able to pursue my dream of becoming a scientist and have had access to role models and mentors throughout my education and career. The number of women scientists like me has increased over the past decades, however, we are still far from a gender equal science community.

While we should continue to reduce the large gap that still exists in terms of numbers, in my opinion, we should put more focus on mechanisms to retain women scientists. Lack of support for women in difficulty, feelings of isolation at work, and unmet expectations are among the top reasons why women leave their careers in science. The COVID-19 pandemic has further contributed to these difficulties as more women are taking additional caregiver roles at home, which in turn impacts their continued employment and career advancement.

To forge a more gender-equal global science community, we need to promote women’s integration in the research environment and workplace by learning about women’s experiences and providing direct support for women in difficulty. Our institutions and organizations should also implement and monitor measures to ensure womens’ career development in a post-pandemic world.

Rashmi Gangadharaiah

Rashmi is a senior research scientist within the AWS organization. She earned her PhD in information technology, artificial intelligence, and machine learning from Carnegie Mellon University.

As a woman and a mother of two girls, I’m glad that gender equality has been receiving more attention. Just talking about gender equality doesn’t mean that we’ve created a gender-equal community. Here are three steps that we can take to create a gender-equal global science community.

  1. Create opportunities that encourage more women to tackle challenging projects.
  2. Recognize women who have an impact on projects and give credit where it’s due.
  3. We as women should not be afraid to take on challenging projects, grab opportunities that come our way and have a community/support system when the deck is stacked against us.

Antia Lamas-Linares

Antia is a principal research scientist within the AWS Center for Quantum Computing. She earned her PhD in physics from the University of Oxford.

Helping diversify science is often not about actions within science, but immediately around science; removing the “death by a thousand cuts” problems.

The most impactful action we can take to improve science careers for women is to prioritize affordable childcare in research campuses (both university and industrial). This also has the very nice feature of benefiting the whole community of researchers, but it would have a disproportionate effect on women, while avoiding the insidious problems of preferential treatment.

If we can make space in campuses for exercise and culture, we can make space for daycares. A second thing we could do is prominently feature female scientists without remarking on their gender, they should not be an anomaly that needs to be highlighted and this narrative can be gently pushed from within organizations. Thirdly, and this is more of a personal action, actively avoid discouraging girls for pursuing geeky interests. Boys get rewarded with questions and attention for this behavior. Girls get the opposite signals.

Bilan Liu

Bilan is an applied robotics scientist within the company’s Lab126 organization. She earned her PhD in electrical and computer engineering at the University of Rochester.

  • The key aspect for a gender equal world is an environment where women share the same opportunities as men, such as quality education.
  • A gender equal world not only calls for the equality of women, but also quality among women. It is beneficial to share the recognition of successful women, as well as to have supportive peers and mentors for young women.
  • We should advocate to elevate women’s voices, both in the workplace and the media. Increasing the representation of women in a workplace not only creates a better workplace, it also changes perceptions about the value that women bring to the table.

Catherine Benoit Norris

Catherine is a science researcher within the company’s Sustainability organization.  She earned her PhD in business administration from the Université du Québec à Montréal.

  • Acknowledge and support workers, students, professionals, and scientists as parents. Until we fully recognize the needs of families, and have a work culture that allows setting limits, women will continue to be held back.
  • Make sure that everyone speaks and are listened to in meetings. Making sure that everybody is being heard and are being paid attention to when they speak is fundamental for a gender-equal global science community.
  • Support, encourage, value, and recognize women academic achievements. Publicly valuing, rewarding, and celebrating competence and achievements in women is a stepping stone towards gender equality in science and beyond.

Tara Taghavi

Tara is a senior applied scientist within the Alexa AI organization. She earned her PhD in computer science from the University of California, Los Angeles.

A first step in promoting gender equality is to involve more women in hiring processes, particularly hiring loops for science roles.

A second step is to facilitate a more favorable work environment for mothers by providing alternate hours, a reduced time schedule, and similar measures so women can grow their careers as they grow their families.

A third step is to empower women to take management roles. Many statistics have been shared regarding the disproportionate number of women who are promoted in comparison to their male counterparts. We should address it by encouraging women to pursue these roles, and then supporting them as they take on the responsibilities of these higher-level roles.

Nedelina Teneva

Nedelina is an applied scientist (search) within the Alexa organization. She earned her PhD in computer science from the University of Chicago.

Engaging in cross-disciplinary collaborations forces us to be curious, empowers us to say “I don’t know” and ask others “What do you think?”. 

This helps us better understand others’ lived experiences. In both professional and personal collaborations, we need to apply more rigorously the scientific method, which minimizes the influence of prejudice, by recognizing our biases or pre-existing beliefs and designing appropriate management strategies.

Finally, we need to continue to solidify these processes into platforms and organizations that nurture diverse opinions. Lessons learned from the existing diversity/inclusion efforts within the science community should be utilized in the broader society. 

Nikhita Vedula

Nikhita is an applied scientist with the Alexa Shopping organization. She earned her PhD in computer science and engineering from Ohio State University.

Education, encouragement, and awareness are key to fostering the growth of a more gender-equal science community.  Throughout my studies — straight through the completion of my PhD — I have seen at best an 80-20 ratio of men to women in classrooms, and academic or industrial positions. This needs to change, and this change needs to begin within our homes.    

Women require support from both men and other women alike, right from their childhood. We need to inspire and motivate women to nurture their dreams, and pursue their unique passions, instead of telling them things like “This field is for men, not for you”.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!