A grid of 12 women scientists who were asked what three steps we can take as a society to forge a more gender-equal science community
As International Women's Day approached, we asked women scientists from research areas across the company what three steps we can take as a society to forge a more gender-equal science community.
Credit: Glynis Condon

How to forge a more gender-equal science community

International Women's Day is March 8 with the theme: #ChooseToChallenge.

International Women’s Day (IWD) is March 8, 2021. The day celebrates the social, economic, cultural and political achievements of women, and also denotes a call to action to accelerate gender parity. This year’s theme: #ChooseToChallenge.

“From challenge comes change, so let’s all choose to challenge,” says the IWD website.

As IWD approached, Amazon Science asked women scientists from research areas across the company what three steps we can take as a society to forge a more gender-equal science community. Below are their responses.

Bouchra Bouqata

Bouchra is a senior applied scientist within Amazon Robotics. She earned her PhD in machine learning and artificial intelligence from Rensselaer Polytechnic Institute.

  • Provide a clear pipeline for advancing and promoting women’s careers in science. Companies and institutions should adopt gender-balanced peer review promotion processes and committees.  They should also provide special funds and grants to help women scientists further their research and work.
  • Conferences and publishing venues should adopt gender-conscious peer-review committee, and speaker- selection committee recruitment processes.
  • Companies and institutions should commit to educating everyone, not just leadership, to combat the issues facing women in science. They should provide gender awareness training as a standard component of any training they provide to their employees and members. They should provide seminars and convene roundtable discussions on gender issues in science to facilitate communication and identification of solutions.

Nilay Noyan Bulbul

Nilay is a principal scientist within the company’s Supply Chain Optimization Technologies organization.  She earned her PhD in operations research from Rutgers University.

  • Call the gender disparity out: Identify where women scientists are marginalized, and call out the disparity to ensure fair representation at the leadership of scientific research and decision-making, as well as “invite-only” prestigious roles, such as keynote speaking engagements, prize juries, and journal editorial board memberships.
  • Invest in the future: Create more initiatives and opportunities for the next generation of women scientists via mentoring and targeted prize and research fund calls.
  • Keep everyone accountable: Make sure every entity working towards gender equality in science community has a tangible way to measure the “change” and keep track of the progress, and make the process transparent.”

Cindy Cui

Cindy is a senior economist within the Alexa Shopping organization. She earned her PhD in economics from the University of Texas at Austin.  

Role models, aspirations, and supportive community are most important factors to me. Growing up, my grandma taught me reading and math. I still remember the days when we would go through math problems and I felt happy and proud when I solved them correctly.

My grandma is also one of the few female teachers in her generation and always emphasizes the importance of education and hard work. In school, many smart female classmates encouraged and challenged me throughout.

It takes all of us to improve gender equality in science, doing our best and helping others along the way.

Donna Dodson

Donna is a senior principal technologist within the AWS Security organization. She earned her master’s degree in computer science from Hood College.

  • Build a culture that values deep thinkers who balance speaking and listening to others. Often the subculture’s voices — including women’s — are not heard.
  • Create compensation, incentives, benefits, resources, recognition and a flexible workplace that balance needs at different stages in life. Early- and mid-career scientists with families require flexibility for a work-life balance.
  • Recognize and promote diverse voices throughout K-12 science programs to empower girls to grow their confidence in science knowledge, skills and abilities

Maryam Fazel-Zarandi

Maryam is a senior machine learning scientist within the Alexa AI organization. She earned her PhD in computer science at the University of Toronto.

Maryam Fazel-zarandi
Maryam Fazel-Zarandi
Credit: Pierce Harman Photography

I have been able to pursue my dream of becoming a scientist and have had access to role models and mentors throughout my education and career. The number of women scientists like me has increased over the past decades, however, we are still far from a gender equal science community.

While we should continue to reduce the large gap that still exists in terms of numbers, in my opinion, we should put more focus on mechanisms to retain women scientists. Lack of support for women in difficulty, feelings of isolation at work, and unmet expectations are among the top reasons why women leave their careers in science. The COVID-19 pandemic has further contributed to these difficulties as more women are taking additional caregiver roles at home, which in turn impacts their continued employment and career advancement.

To forge a more gender-equal global science community, we need to promote women’s integration in the research environment and workplace by learning about women’s experiences and providing direct support for women in difficulty. Our institutions and organizations should also implement and monitor measures to ensure womens’ career development in a post-pandemic world.

Rashmi Gangadharaiah

Rashmi is a senior research scientist within the AWS organization. She earned her PhD in information technology, artificial intelligence, and machine learning from Carnegie Mellon University.

As a woman and a mother of two girls, I’m glad that gender equality has been receiving more attention. Just talking about gender equality doesn’t mean that we’ve created a gender-equal community. Here are three steps that we can take to create a gender-equal global science community.

  1. Create opportunities that encourage more women to tackle challenging projects.
  2. Recognize women who have an impact on projects and give credit where it’s due.
  3. We as women should not be afraid to take on challenging projects, grab opportunities that come our way and have a community/support system when the deck is stacked against us.

Antia Lamas-Linares

Antia is a principal research scientist within the AWS Center for Quantum Computing. She earned her PhD in physics from the University of Oxford.

Helping diversify science is often not about actions within science, but immediately around science; removing the “death by a thousand cuts” problems.

The most impactful action we can take to improve science careers for women is to prioritize affordable childcare in research campuses (both university and industrial). This also has the very nice feature of benefiting the whole community of researchers, but it would have a disproportionate effect on women, while avoiding the insidious problems of preferential treatment.

If we can make space in campuses for exercise and culture, we can make space for daycares. A second thing we could do is prominently feature female scientists without remarking on their gender, they should not be an anomaly that needs to be highlighted and this narrative can be gently pushed from within organizations. Thirdly, and this is more of a personal action, actively avoid discouraging girls for pursuing geeky interests. Boys get rewarded with questions and attention for this behavior. Girls get the opposite signals.

Bilan Liu

Bilan is an applied robotics scientist within the company’s Lab126 organization. She earned her PhD in electrical and computer engineering at the University of Rochester.

  • The key aspect for a gender equal world is an environment where women share the same opportunities as men, such as quality education.
  • A gender equal world not only calls for the equality of women, but also quality among women. It is beneficial to share the recognition of successful women, as well as to have supportive peers and mentors for young women.
  • We should advocate to elevate women’s voices, both in the workplace and the media. Increasing the representation of women in a workplace not only creates a better workplace, it also changes perceptions about the value that women bring to the table.

Catherine Benoit Norris

Catherine is a science researcher within the company’s Sustainability organization.  She earned her PhD in business administration from the Université du Québec à Montréal.

  • Acknowledge and support workers, students, professionals, and scientists as parents. Until we fully recognize the needs of families, and have a work culture that allows setting limits, women will continue to be held back.
  • Make sure that everyone speaks and are listened to in meetings. Making sure that everybody is being heard and are being paid attention to when they speak is fundamental for a gender-equal global science community.
  • Support, encourage, value, and recognize women academic achievements. Publicly valuing, rewarding, and celebrating competence and achievements in women is a stepping stone towards gender equality in science and beyond.

Tara Taghavi

Tara is a senior applied scientist within the Alexa AI organization. She earned her PhD in computer science from the University of California, Los Angeles.

A first step in promoting gender equality is to involve more women in hiring processes, particularly hiring loops for science roles.

A second step is to facilitate a more favorable work environment for mothers by providing alternate hours, a reduced time schedule, and similar measures so women can grow their careers as they grow their families.

A third step is to empower women to take management roles. Many statistics have been shared regarding the disproportionate number of women who are promoted in comparison to their male counterparts. We should address it by encouraging women to pursue these roles, and then supporting them as they take on the responsibilities of these higher-level roles.

Nedelina Teneva

Nedelina is an applied scientist (search) within the Alexa organization. She earned her PhD in computer science from the University of Chicago.

Engaging in cross-disciplinary collaborations forces us to be curious, empowers us to say “I don’t know” and ask others “What do you think?”. 

This helps us better understand others’ lived experiences. In both professional and personal collaborations, we need to apply more rigorously the scientific method, which minimizes the influence of prejudice, by recognizing our biases or pre-existing beliefs and designing appropriate management strategies.

Finally, we need to continue to solidify these processes into platforms and organizations that nurture diverse opinions. Lessons learned from the existing diversity/inclusion efforts within the science community should be utilized in the broader society. 

Nikhita Vedula

Nikhita is an applied scientist with the Alexa Shopping organization. She earned her PhD in computer science and engineering from Ohio State University.

Education, encouragement, and awareness are key to fostering the growth of a more gender-equal science community.  Throughout my studies — straight through the completion of my PhD — I have seen at best an 80-20 ratio of men to women in classrooms, and academic or industrial positions. This needs to change, and this change needs to begin within our homes.    

Women require support from both men and other women alike, right from their childhood. We need to inspire and motivate women to nurture their dreams, and pursue their unique passions, instead of telling them things like “This field is for men, not for you”.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the ML Science and Engineering team, with a strong focus on Generative AI. The team consists of top-notch ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and senior Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
This single-threaded leader will focus on designing experiences and optimizations to monetize Amazon Detail Pages, while improving shopper experience and returns for our advertising customers. This leader will own generating different widgets (thematic, blended, interactive prompt, hybrid merchandising), and the science, tech and signaling systems to enable them for the different category and BuyX teams. This leader will also own science and systems for bidding into ranking systems like Percolate, and for operating the marketplace through allocation and pricing methods. They will own identifying operating points for WW marketplaces in terms of entitlement, RoAS impact and other benchmarks, plus invent ways to operationalize this thinking, all while experimenting to learn from the marketplace. The leader will also own AI generation of shopping pages for monetization (these shopping pages are built on DP content). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Santa Monica
Amazon Advertising is looking for a motivated and analytical self-starter to help pave the way for the next generation of insights and advertising products. You will use large-scale data, advertising effectiveness knowledge and business information needs of our advertising clients to envision new advertising measurement products and tools. You will facilitate innovation on behalf of our customers through end-to-end delivery of measurement solutions leveraging experiments, machine learning and causal inference. You will partner with our engineering teams to develop and scale successful solutions to production. This role requires strong hands-on skills in terms of effectively working with data, coding, and MLOps. However, the ideal candidate will also bring strong interpersonal and communication skills to engage with cross-functional partners, as well as to stay connected to insights needs of account teams and advertisers. This is a truly exciting and versatile position in that it allows you to apply and develop your hands-on data modeling and coding skills, to work with other scientists on research in new measurement solutions while at the same time partner with cross-functional stakeholders to deliver product impact. Key job responsibilities As an Applied Scientist on the Advertising Incrementality Measurement team you will: - Create new analytical products from conception to prototyping and scaling the product end-to-end through to production. - Scope and define new business problems in the realm of advertising effectiveness. Use machine learning and experiments to develop effective and scalable solutions. - Partner closely with the Engineering team. - Partner with Economists, Data Scientists, and other Applied Scientists to conduct research on advertising effectiveness using machine learning and causal inference. Make findings available via white papers. - Act as a liaison to product teams to help productize new measurement solutions. About the team Advertising Incrementality Measurement combines experiments with econometric analysis and machine learning to provide rigorous causal measurement of advertising effectiveness to internal and external customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Boulder, CO, USA | New York, NY, USA | Santa Monica, CA, USA
US, CA, Santa Clara
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team Here at AWS, it’s in our nature to learn and be curious about diverse perspectives. Our employee-led affinity groups foster a culture of inclusion that empower employees to feel proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. We have a career path for you no matter what stage you’re in when you start here. We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career- advancing resources here to help you develop into a better-rounded professional. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | San Jose, CA, USA | Santa Clara, CA, USA
GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA