Image shows the 2022 F1 car sitting in profile on a racetrack with viewing stands in the background
The F1 engineering team collaborated with AWS to explore the science of how cars interact when racing in close proximity.
F1

The science behind the next-gen FORMULA 1 car

Learn how the F1 engineering team collaborated with AWS to develop new design specifications to help make races more competitive.

When the 2022 FORMULA 1 (F1) racing season revs up in March, teams will take to the track with newly designed cars engineered to give fans — and drivers — more of the wheel-to-wheel action they’ve been seeking.

“Anybody who has followed the sport has heard drivers complain on the radio about not being able to get close enough to the car in front of them,” explains Simon Dodman, principal aerodynamicist at F1. “Essentially what they're reporting in those situations is a lack of grip, or downforce.”

Anybody who has followed the sport has heard drivers complain on the radio about not being able to get close enough to the car in front of them. What they're reporting in those situations is a lack of grip, or downforce.
Simon Dodman

F1 cars are the fastest regulated road-course racing vehicles in the world. While these open-wheel automobiles are only 20 to 30 kilometers (or 12 to 18 miles) per-hour faster than top-of-the-line sports cars, they can speed around corners up to five times as fast due to the powerful aerodynamic downforce they create. Much like the way that aircraft generate lift through their wings, F1 cars use a similar mechanism, except inverted, to generate the downforce they need.

Cars lose up to 50% of this downforce when racing closely behind another car due to the turbulent wake generated by wings and bodywork. Turbulence from the leading car causes the trailing car to slide and lose its grip on the track. The driver behind senses a loss of grip earlier than the driver in front and, ultimately, has to take his foot off the accelerator.

Related content
In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

“This loss of downforce means that even the best drivers in the world can’t overtake the car in front of them, ” says Neil Ashton, a former FORMULA 1 engineer who today is principal computational fluid dynamics (CFD) specialist for Amazon Web Services (AWS).

“It's as simple as an object moving through a fluid — whether that's air or water — and creating a disturbance behind it,” Dodman adds. “Think of a speedboat rushing by on a completely calm lake. Basically, cars do the same through air. The faster cars go, the more downforce they make, and the bigger the wake behind them becomes. And wake is detrimental to what’s behind it. Imagine trying to drive a speedboat behind another speedboat and bouncing around in the water — it’s the same with race cars.”

"Nobody designs a car to come in second"

Over the past three years, the F1 engineering team has collaborated with AWS to explore the science of how cars interact when racing in close proximity and, ultimately, develop new design specifications to deliver a more competitive racing spectacle for fans while keeping drivers safe.

“One criticism often leveled against FORMULA 1 is that, at times, it can be processional and easy to predict who will win on a given race weekend by virtue of the fact that it's quite a cyclical sport in terms of competitiveness,” Dodman said. “Fans want to watch an exciting race with lots of overtaking and, quite simply, the sport hasn’t delivered that. We recognized things had to change to level the playing field and deliver a more compelling spectator experience.”

2022 F1 Car option 1.jpg
Instead of relying on time-consuming and costly physical tests, F1 used computational fluid dynamics, which provides a virtual environment to study the flow of fluids, to help design the 2022 F1 car seen here.
F1

The F1 engineering team was tasked with designing a car that can produce a smaller wake, while maintaining the degree of downforce and peak speeds, but is also not adversely affected by driving through another car’s wake.

“Nobody designs a car to come in second,” observes Pat Symonds, chief technical officer at FORMULA 1. “But for this project, we were looking at how cars perform in the wake of another car, as opposed to running in clean air.”

Instead of relying on time-consuming and costly physical tests, F1 used computational fluid dynamics, which provides a virtual environment to study the flow of fluids (in this case the air around the F1 car) without ever having to manufacture a single part. By numerically solving a form of the Navier-Stokes equations, companies like FORMULA 1 can study the complex nature of turbulent flows from their laptops.

"A lot of complex physics"

“There are a lot of complex physics involved with how a F1 car moves around a corner, which creates a massive computational challenge with a huge matrix of scenarios,” Ashton said. “This meant that F1 needed access to very large high performance computing (HPC) resources.”

F1's Rob Smedley on using AWS to improve the fan experience

The project kicked off with F1 using CFD at a third-party facility, which meant sharing capacity with other customers and, as a result, limiting the quantity and quality of simulations. Dodman’s team ultimately transitioned to a HPC platform on AWS, using AWS ParallelCluster and a combination of Amazon Elastic Compute Cloud (Amazon EC2) instances including AWS Graviton2-based C6gn instances to run complex simulations modeling the turbulence wake of cars and the impact on trailing cars.

“Moving to AWS enabled us to break away from that serial model and run lots of cases at once without having to queue behind other customers,” Dodman said.This meant the time between receiving and analyzing results and moving to the next step was much shorter. We were able to shortcut a lot of the process.”

Customers use AWS for CFD projects to design everything from aircraft to medical devices. While the most powerful desktops have around 64 processing cores, F1 engineers had access to more than 2,500 AWS cores for every run — often with many jobs running simultaneously.

Image shows an overhead of the right panel of the front wing of the 2022 F1 car, the panel and car are iridescent
The new 2022 F1 car includes a simplified front wing that diverts airflow off the front wheels.
F1

“We quickly realized that the only way we were going to make inroads was to do as many simulations using CFD as possible,” Dodman said. “By using the hugely scalable compute resource AWS offers, we were able to do far more runs and come to conclusions and solutions a lot faster.”

Running the project with AWS removed all barriers related to time and computing capacity, reducing the average simulation run time from 60 hours to 12. It also reduced the cost of running workloads by 30%, delivering supercomputer-level performance for a fraction of the budget.

F1 originally planned to run 20 or 30 simulations a week, but was able to increase that to between 80 and 90 with AWS. “And with access to much more compute resources than even the [F1 racing] teams have, we're able to run two-car simulations and look at the problem in a way that has never been done before,” Dodman added.

Massive data

AWS enabled F1 to run more than 5,000 single- and multi-car simulations over six months, yielding 550 million data points. These insights led to Fédération Internationale de l'Automobile (FIA is the governing body of motor sport) design specifications for a next-gen car with only 15% downforce loss at a one-car-length distance. F1 teams are currently using the regulations to design cars for the 2022 season.

We're confident drivers will be able to race more closely, with potential for far more overtaking.
Simon Dodman

New robust aerodynamic features include wheel wake control devices; a simplified front wing that diverts airflow off the front wheels; a more sculpted rear wing to effectively draw air in from the sides and lift it above the car following behind; simplified suspension; and underfloor tunnels. For the first time, all F1 cars will run on 18-inch wheels (up from 13 inches) with low-profile tires.

This will reduce turbulent airflow from the car ahead, increasing downforce of the following car, and allowing it to close the gap and potentially overtake the leader.

“The new design lifts a car’s wake higher so the following car can drive under it rather than through it,” Dodman said. “We're confident drivers will be able to race more closely, with potential for far more overtaking. And with less distance between the fastest and slowest cars on the track, we see more opportunity for different teams to win week to week.”

F1 2022 - SILVERSTONE - front low angle.jpg
The 2022 F1 car features simplified suspension, underfloor tunnels and, for the first time, all F1 cars will run on 18-inch wheels (up from 13 inches) with low-profile tires.
F1

F1 tested and verified the new design in a wind tunnel. “They found the correlation between the simulation data and the test was very good, which proved that you can do a complicated, high-fidelity engineering design project in CFD,” Ashton said.

F1 are now starting the process of looking into AWS machine learning services such as Amazon SageMaker to help to optimize the design and performance of the car by using the simulation data to build models with additional insights.

“It’s still early days,” Ashton concluded, “but machine learning is proving to be a compelling additional reason to collaborate with AWS and I’m excited to see what we can achieve together.”

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About the Role Platforms & Services is responsible for the central services and systems that empower both Twitch users directly as well as the product engineers across Twitch who build experiences for them. You will be part of a team of data scientists who focus on providing deep product and user insights that drive engineering roadmaps, priorities, and investments. You will partner closely with product managers, engineering leaders, and engineers to build deep product expertise and will become a critical voice in the development and delivery of some of Twitch’s most critical central services. You can work in San Francisco, CA; Irvine, CA; New York, NY; or Seattle, WA. About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You Will - Collaborate with product, engineering, and operations teams to design durable systems that support all of Twitch - Tackle ambiguous, high-impact problems by defining analytical approaches grounded in statistics, computer science, and deep domain expertise—driving clarity, innovation, and durable solutions at scale - Become a key thought partner in shaping builder experiences, providing data-backed insights to support higher-quality and more efficient experiences for builders across Twitch - Foster a culture of analytical rigor, clear communication, and shared accountability for impact across cross-functional teams. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers and stakeholders, and ensure that the teams and programs are empowered and enabled to take data-driven actions - Prioritize and execute in the face of ambiguity, work with stakeholders and mentors to distill the problem, adapt tools to answer complicated questions, and identify the trade-offs between speed and quality of different approaches - Create analytical frameworks to measure team success by partnering with cross-functional teams to define success metrics, create approaches to track the data and troubleshoot errors, quantify and evaluate the data to develop a common language for all colleagues to understand these metrics and KPIs - Operationalize data processes in order to provide stakeholders with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques About the team The India Machine Learning team works closely with the business and engineering teams in building ML solutions that create an impact for Amazon's IN businesses. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on consumers and end users.
US, WA, Seattle
We are looking for a Senior Applied Scientist who will lead the technical vision and innovation in revolutionizing how product managers, program managers, and business analysts work with artificial intelligence. You will be part of the Amazon AI at Work (AIW) team building the next generation of AI agents that transform how business professionals operate and reshape the future of hybrid (AI + human) work. As a Senior Applied Scientist, you are a recognized technical leader who drives the scientific strategy, mentors team members, and partners with cross-functional teams to deliver complex end-to-end AI solutions. Your work focuses on identifying and framing new research challenges in ambiguous problem areas where both the business problem and solution approach need to be defined. The problems you tackle require significant scientific innovation at the product level. Key job responsibilities • Design and architect complex AI agent systems for business and product management workflows at scale • Define and lead research initiatives in human-AI collaboration frameworks across multiple teams • Drive end-to-end delivery of novel AI solutions from inception to production, ensuring system-level technical requirements are met • Lead technical discovery and innovation through rapid experimentation while maintaining high standards • Mentor junior scientists and influence adoption of scientific best practices across teams • Author technical documentation and research papers that advance the field of AI agents The ideal candidate combines deep technical expertise with strong business acumen and thrives in ambiguous, fast-paced environments. You should be passionate about creating AI solutions that enhance human capabilities and comfortable working in a startup-like atmosphere while maintaining high standards for responsible AI development. A day in the life You take ownership of the long-term scientific vision, product roadmaps, and technologies, defining how they should evolve. You build consensus through thoughtful discussions with stakeholders, engineers, and scientist peers across multiple teams. You bring deep expertise to provide context for current and future technology choices and make strategic recommendations on modeling approaches and system architecture to achieve transformative business outcomes and user experiences. About the team As part of the AWS Applied AI Solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
We are looking for an Applied Scientist who is passionate about revolutionizing how product managers, program managers, and business analysts work with artificial intelligence. You will be part of the Amazon AI at Work (AIW) team building the next generation of AI agents that transform how business professionals operate and reshape the future of hybrid (AI + human) work. As an Applied Scientist, you are recognized for your expertise, advise team members on a range of machine learning topics, and work closely with software engineers to drive the delivery of end-to-end agentic AI solutions. Your work focuses on ambiguous problem areas where the business problem or opportunity may not yet be defined. The problems that you take on require scientific breakthroughs. You take a long-term view of the business objectives, product roadmaps, technologies, and how they should evolve. You drive mindful discussions with stakeholders, engineers, and scientist peers. You bring perspective and provide context for current technology choices and make recommendations on the right modeling and component design approach to achieve the desired business outcome and user experience. Key job responsibilities • Design and develop AI agents specifically tailored for business and product management workflows. • Create novel frameworks for automating and enhancing workplace tasks. • Lead cross-team projects to bring solutions from research to production. • Drive innovation in business process automation and decision support systems. • Communicate and document your research via publishing papers in external scientific venues. About the team As part of the AWS Applied AI Solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, Sunnyvale
Our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Senior Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services .
US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Sunnyvale
Are you passionate about solving complex wireless challenges that impact millions of customers? Join Amazon's Device Connectivity team who are revolutionizing how wireless technology shapes the future of consumer electronics. As a Wireless Research Scientist, you'll be at the forefront of developing solutions that enhance the connectivity and reliability of millions of customer devices. Your expertise will drive the creation of next-generation wireless technologies, from concept to implementation, directly shaping the future of Amazon's product ecosystem. In this role, you'll tackle complex electromagnetic challenges head-on, leveraging your analytical prowess and deep understanding of wireless principles. You'll collaborate with world-class scientists and engineers, applying machine learning and statistical analysis to optimize system performance and create scalable, cost-effective solutions for mass production. Your impact will extend beyond the lab, as you transform research concepts into practical features that delight our customers. You'll influence product roadmaps, drive critical technical decisions, and play a key role in accelerating our product development lifecycle. Key job responsibilities As a Wireless research scientist, you will use your experience to initiate wireless design, development, execution and implementation of scientific research projects. Working closely with fellow hardware dev, scientists and product managers, you will use your experience in modeling, statistics, and simulation to design new hardware, customer modeling and evaluate their benefits and impacts to cost, connectivity use cases, reliability, and speed of productization Ability to work and connect concepts across various engineering fields like EMC design, desense, antenna, wireless communication and computational electromagnetics to solve complex and novel problems Experience in combinatorial optimization, algorithms, data structures, statistics, and/or machine learning that can be leveraged to develop novel wireless designs that can be integrated and mass produced on products. This position requires superior analytical thinking, and ability to apply their technical and statistical knowledge to identify opportunities for wireless/EM applications. You should be able to mine and analyze large data, and be able to use necessary programming and statistical analysis software/tools to do so. Ability to leverage ML techniques for design optimization and performance modeling that influence technology integration and productization of novel consumer products. A day in the life Invent • You invent and design new solutions for scientifically-complex problem areas and identify opportunities for invention in existing or new business initiatives. • You expertly frame the scientific approach to solve ambiguous business problems, distinguishing between those that require new solutions and those that can be addressed with existing approaches. • You focus on business and customer problems that require scientific advances at the product level. Your research solutions set a strong example for others. You work efficiently and routinely delivered the right things. • You show good judgment when making trade-offs between short- and long-term customer, business, and technology needs. • You drive your team’s scientific agenda by proposing new initiatives and securing management buy-in. • You lead the writing of internal documents or external publications when appropriate for your team and not precluded by business considerations. • Your work consistently delivers significant benefit to the business. What you deliver could be functional, such as a software system or conceptual, such as a paper that advances scientific knowledge in a specific field or convinces the business to focus on a particular strategy. Implement • You are self-directed in your daily work and require only limited guidance for confidence checks. • You define and prioritize science or engineering specifications for new approaches. • You independently assess alternative technologies or approaches to choose the right one to be used by your system or solution with little guidance. You may own the delivery of solutions for an entire business application. • You ensure accuracy in your process abstractions, models, and simulation results. • Your solutions are inventive, maintainable, scalable, extensible, accurate, and cost-effective (e.g., you know where to extend or adapt methods). • Your solutions are creative and of such a high quality that they can be handed off with minimal rework. Influence • You are a key influencer in team strategy that impacts the business. You make insightful contributions to team roadmaps, goals, priorities, and approach. • You build consensus on larger projects and factor complex efforts into independent tasks that can be performed by you and others. • You actively recruit and help others by coaching and mentoring in your organization (or at your location). • You are involved and visible in the broader scientific communities (internal or external) as a subject matter expert. For example, you may give guest lectures, review scientific work of others, serve as a Program Committee member in conferences, or serve as a reviewer for journal publications. • You contribute to the broader internal and external scientific communities. About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.