Promotional image for 'AI lullaby,' featuring Endel Grimes
Endel, a Berlin, Germany-based provider of personalized sound environments, recently released an updated and streamlined skill for Alexa that includes "AI Lullaby", a soundscape with vocals, music, and voiceovers by Grimes (whose name is now c).
Credit: Endel

The science behind Endel's AI-powered soundscapes

Alexa Fund company releases updated and streamlined skill for Alexa that includes "AI Lullaby" soundscape with vocals, music, and voiceovers by Grimes.

(Editor’s note: This article is the latest installment in a series by Amazon Science delving into the science behind products and services of companies in which Amazon has invested. The Amazon Alexa Fund first invested in Endel in 2018 and earlier this year participated in their $5 million Series A led by True Ventures.)   

Recently, Endel launched an updated and streamlined Endel skill for Alexa that includes the “molecular mechanisms” soundscape with original vocals, music, and voiceovers by Grimes

The company made major headlines earlier this fall when c (the artist’s new lower-case, italicized name, inspired the symbol for the speed of light) released “AI Lullaby”, a scientifically engineered sleep soundscape that’s now available on Alexa. c actually initiated the collaboration with Endel after using the app, and because of her search for sleeping aids for her young son. 

Endel co-founders Oleg Stavitsky  and Dmitry Evgrafov
From the very beginning of the company, Endel co-founders Oleg Stavitsky, CEO, (left), and Dmitry Evgrafov, sound designer, say it has been important for the company to be "rooted in science".
Credit: Vika Bogorodskaya

Endel was founded in 2018 by a team of six. It is now a 30-person operation focused on creating personal artificial intelligence-powered soundscapes that take into account an individual’s immediate conditions. It does this by assessing a person’s current state and generating an appropriate soundscape from components of its sound engine. This process was born out of scientific principles about sound’s effect on the human body and mind.

In time for the release of the updated skill for Alexa, Amazon Science contributor Tyler Hayes spoke with Endel co-founders Oleg Stavitsky (CEO) and Dmitry Evgrafov (sound designer) about how Endel uses a variety of contextual data points to play the right sounds at the right time. 

Q. What are some of the contextual signals you use to provide personalized sounds? 

Stavitsky: Circadian rhythms is one. Each person’s body has a natural, daily rhythm — an internal clock. Even if you can’t explain it exactly, you’ve likely felt the physical or mental changes happening on a daily cycle. Circadian rhythm is a sleep-wake cycle that regulates the secretion of a sleep hormone called melatonin. It repeats every 24 hours and is constantly fine-tuned through natural light levels. Scientists have been observing circadian rhythm for some time now and in 2017, the Nobel Prize was awarded to three Americans for their discovery of molecular mechanisms that control the circadian rhythm.

Related content
Built-in radar technology, deep domain adaptation for sleep stage classification, and low-latency incremental sleep tracking enable Halo Rise to deliver a seamless, no-contact way to help customers improve sleep.

We use these universal rhythms as a baseline for our sound personalization. Everyone’s circadian graph will look different depending on where they live and their sleep habits. We also use signals such as user location and time to estimate natural light levels for further personalization. In addition to the circadian rhythm, we use the ultradian rhythm, a rest-activity cycle that regulates cognitive state, mood, and energy level. It consists of roughly 110-minute energy level loops.

Evgrafov: Curated playlists full of piano or classical guitar may feel relaxing to some people at certain points throughout the day, but those ways of relaxing with music can’t adjust depending on individual factors. If one wants to effectively use these curated playlists for specific tasks, the onus falls on the listener to know the specifics of their circadian and ultradian rhythms. Instead, our app or skill creates a personalized circadian rhythm chart for each listener to target the user’s desired mood through sound. Are you in a natural energy entry slump, but still trying to focus? We adjust accordingly. 

In the case of Alexa, we use local information such as time of day, weather, and the amount of natural light exposure through which we know the circadian rhythm phase. Alexa customers must first create an account with us to utilize the skill, and can learn about our privacy policy. With our iOS app, health data also is a key signal for creating personalized sound. Using a person’s heart rate as a real-time input indicator is one essential tool for soundscape personalization. 

Related content
Scientists discuss the challenges in developing a system that can accurately estimate body fat percentage and create personalized 3D avatars of users from smartphone photos.

We can use real-time heart rate data from people wearing fitness trackers or smartwatches like Apple Watch, if they’ve agreed to allow access. With access to heart rate data, we can recognize prolonged spikes and adapt the BPM to try to bring the heart rate back to a resting level. If possible, in the future, we would be very interested in providing this kind of personalization with the new Amazon Halo

BPM isn’t the only tool we use to adjust human physiology. One study by Luciano Bernardi looked at how swelling crescendos and deflating decrescendos can affect our physiology. Bernardi found that music with a series of crescendos generally led to increased blood pressure, heart rate, and respiration; while selections with decrescendos typically had the opposite effect.

Another study looking at effects on heart rate variability when exposed to different styles of "relaxing" music found that "new age" music induced a shift in heart rate variability from higher to lower frequencies, independent of a listener’s music preference. These and other studies suggest that music can go beyond evoking emotion to impacting cardiovascular function.

Q: How has music theory informed the types of sound your Alexa skill produces? 

Evgrafov: For music composition, we first used the pentatonic scale, a set of notes ordered by pitch or frequency, because of its popularity across modern music.

Listeners may also notice that the AI-powered soundscapes are often very simple. Using less complex tones, melodies, and movement helps ease the burden on our minds. We started with simple ratios of two tonal frequencies like octaves, 2:1, or a perfect fifth, 3:2, because those are pleasing to the brain. A new model suggests music is found to be pleasing when it triggers a rhythmically consistent pattern in certain auditory neurons.

We try to reduce brain fatigue in other ways, too. While complex song structures and unique melodies may sound nice, they force our brains to work a little harder to make sense of them. This auditory experience creates alertness in listeners. Sometimes that’s the goal of the listener, but not always. It can be difficult to determine if a song uses complex or simple elements, especially without musical training. That’s why one piece of classical music might not lull listeners into a state of relaxation in the way others do.

We employ models to determine which sounds are best suited for relaxation and which are best suited for alertness and focus. Relaxation is best facilitated with mellow tones, slow chord changes, and simple structures. Our brains are constantly analyzing sound and the less detail there is, the less attention is dedicated to that task. This helps facilitate relaxation quicker and for longer periods.

The sounds that we find most calming are also linked to our biology. Research by Lee Salk dating back to the 1960s showed how infants exposed to a heart rate of 72 bpm at 85db overwhelmingly appeared happier. They cry less and put on weight easier. Studies continue to show how lower frequencies and bass can be calming.

Q. What are your plans for evolving your soundscapes, and how will science play a role in the evolution of Endel? 

Stavitsky: To effectively personalize sound through time and tone, we have based our soundscapes on the scientific principles that Dmitry has described above. To validate and take our research-based soundscapes further, we have consulted many experts. 

For example, in the initial stages of figuring out how helpful Endel could be for people, we contacted Mihaly Csikszentmihalyi, author of the book Flow. Csikszentmihalyi designed his own survey methodology while writing the book to figure out whether people were “in flow” — a focused mental state conducive to productivity. We adapted Csikszentmihalyi’s survey to be interactive inside the app. Listeners were continually asked about their feelings, state of being, and mood to improve the effectiveness of the sounds.

Sleep scientist Roy Raymann of SleepScore Labs has been instrumental in helping us create soundscapes to naturally facilitate sleep. The latest advancement includes incorporating a sleep onset period. To do this, the same jingle or sounds are played around the same time each night to trigger the body into a restful phase.

We use broadband noises, those from a wide range of frequencies, because broadband sound administration has also shown to reduce sleep onset latency. Further into the sleep cycle, Endel incorporates nature sounds such as waves to resemble human breathing because hearing breathing-like sounds can help lull people into sleep.

We also have partnered with Germany’s largest scientific institution to study the effect of colored noises on concentration in a workspace environment, and we’re working with a brain wave analysis company for a validation experiment. The study will monitor brain activity of participants listening to Endel, popular streaming music playlists, and silence, to compare the effectiveness at achieving the state of flow.

As a team, we’re rapidly evolving to incorporate the latest data to help listeners with their goals. One example: we’re currently exploring sound masking, which will lead to new ways of listening across varied environments. But other types of sounds and scenarios informed by real-time listener data are in the works, too.

Our unique ability to adapt to every individual and creative, multidisciplinary approach are our magic potion. The scientific principles and research incorporated into the platform are what make Endel so powerful.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist II, you will work on complex problems where neither the problem nor solution is well defined. You'll define and crisply frame research problems while developing novel scientific techniques in domains including machine learning, artificial intelligence (AI), natural language processing (NLP), large language models (LLMs), reinforcement learning (RL), and audio processing. Your primary focus will be on applying and extending existing scientific techniques, as well as inventing new approaches to address specific customer needs and business problems at the project level. You will contribute to internal or external peer-reviewed publications that validate the novelty of your work, while documenting and sharing findings in line with scientific best practices. You will work on LLM applications to enhance Audible's customer experience We work in a highly collaborative environment where you'll primarily influence your team, begin mentoring more junior scientists, and partner with engineers and product managers to implement scalable, efficient approaches for difficult problems. You will operate with some autonomy while knowing when to seek direction to deliver high-quality scientific artifacts. As an Applied Scientist II, you will... - Define and implement scalable, efficient approaches for difficult problems related to audio storytelling and content experiences - Apply and extend state-of-the-art LLM techniques to address specific customer or business needs at the project level - Work on portions of systems, large components, applications, or services supporting machine learning and AI use cases - Apply and extend state-of-the-art techniques in areas like NLP and deep learning to address specific customer or business needs - Execute on team-level goals while creating intellectual property through your work - Apply best practices in software development at the component level, ensuring solutions are testable, reproducible, and efficient - Document and share findings that contribute to the internal and external scientific community - Begin mentoring and developing teammates while gaining experience in tactical work and learning to be strategic - Collaborate with tech and product teams to implement solutions that consider relevant tradeoffs at the component level ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.