Amazon Halo Rise advances the future of sleep

Built-in radar technology, deep domain adaptation for sleep stage classification, and low-latency incremental sleep tracking enable Halo Rise to deliver a seamless, no-contact way to help customers improve sleep.

The benefits of quality sleep are well documented, and sleep affects nearly every aspect of our physical and emotional well-being. Yet one in three adults doesn’t get enough sleep. Given Amazon’s expertise in machine learning and radar technology innovation, we wanted to invent a device that would help customers improve their sleep by looking holistically at the factors that contribute to a good night’s rest.

That’s why we’re excited to announce that Amazon has unveiled its first dedicated sleep device — Halo Rise, a combined bedside sleep tracker, wake-up light, and smart alarm. Powered by custom machine learning algorithms and a suite of built-in sensors, Halo Rise accurately determines users’ sleep stages and provides valuable insights that can be used to optimize their sleep, including information about their sleep environments. Halo Rise has no sensors to wear, batteries to charge, or apps to open. And since a good wake-up experience is core to good sleep, Halo Rise features a wake-up light and smart alarm, designed to help customers start the day feeling rested and alert.

Halo Rise in action
A built-in radar sensor uses ultralow-power radio signals to sense respiration and movement patterns and determine sleep stages.

Designing with customer trust as our foundation

Customer privacy and safety are foundational to Halo Rise, and that's evident in both the hardware design and the technologies used to power the experience. Halo Rise features neither a camera nor a microphone and instead relies on ambient radar technology and machine learning to accurately determine sleep stages: deep, light, REM (rapid eye movement), and awake.

The technology at the core of Halo Rise is a built-in radar sensor that safely emits and receives an ultralow-power radio signal. The sensor uses phase differences between reflected signals at different antennas to measure movement and distance. Through on-chip signal processing, Halo Rise produces a discrete waveform corresponding to the user’s respiration. The device cannot detect noise or visual identifiers associated with an individual user, such as body images.

Using built-in radar technology enables us to prioritize customer privacy while still delivering accurate measurements and useful results. Customers have the option to manually put Halo Rise into Standby mode, which turns off the device’s ability to detect someone’s presence or track sleep.

Halo Rise hardware design
Halo Rise features a suite of sensors to accurately track your sleep and measure your room’s temperature, humidity, and light levels. 

Intuitive and accurate experience

To design the sleep-tracking algorithm that powers Halo Rise, we thought about the most common bedtime behaviors and the ways in which customers and their families (pets included) might engage with the bedroom. This led us to innovate on five main technological fronts:

  • Presence detection: Halo Rise activates its sleep detection only when someone is in range of the sensor. Otherwise, the device remains in a monitoring mode, where no data is transmitted to the cloud.
  • Primary-user tracking: Halo Rise distinguishes the sleep of the primary user (the user closest to the device) from that of other people or pets in the same bed, even though the respiration signal cannot be associated with individual users.
  • Sleep intent detection: Halo Rise detects when the user first starts trying to sleep and distinguishes that attempt from other in-bed activities — such as reading or watching TV — to accurately measure the time it takes to fall asleep, an important indicator of sleep health.
  • Sleep stage classification: Halo Rise reliably correlates respiration-driven movement signals with sleep stages.
  • Smart-alarm integration: During the user’s alarm window, the Halo Rise smart alarm checks the user’s sleep stage every few minutes to detect light sleep, while also maximizing sleep duration.
Halo-Vienna-MM_Wave-Chart.png
A combination of breathing and movement patterns enables Halo Rise to determine the primary user for the sleep session and to measure that person’s sleep throughout the night.

Presence detection

Halo Rise has an easy setup process. To get started, a customer will place Halo Rise on their bedside table facing their chest and note in the Amazon Halo app what side of the bed they sleep on — and that’s it: Halo Rise is ready to go. The radar sensor detects motion within a 3-D geometric volume that fans out from the sensor, an area called the detection zone. Within this zone, the presence detection algorithm estimates the location of the bed and an “out-of-bed” area between the bed and the device.

On-chip algorithms detect the motion and location of respiration events within the detection zone. In both cases — motion and respiration — the algorithm evaluates the quality of the signals. On that basis, it computes a score indicating its confidence that the readings are reliable and a user is present. Only if the confidence score crosses a reliability threshold does Halo Rise begin streaming sensor data to the cloud, where it is processed by the primary-user-tracking algorithm.

Radar Fan.png
The Halo Rise detection zone is the region within which the radar sensor senses motion and location.

Primary-user tracking

We know that many of our customers share their beds, be it with other people or with pets, so our algorithms are designed to track the sleep of only the primary user. Halo Rise starts a sleep session after it detects someone’s presence within the detection zone for longer than five minutes. From there, the primary-user-tracking algorithm runs continuously in the background, sensing the closest user’s sleep stages. As long as the user sleeps on their side of the bed, and their partner sleeps on the other side, Halo Rise will track the primary user’s sleep quality irrespective of who comes to bed first and who leaves the bed last.

During the sleep session, Halo Rise dynamically monitors changes in the user’s distance from the sensor, the respiration signal quality, and abrupt changes in respiration patterns that indicate another person’s presence. These changes cause the algorithm to reassess whether it’s actually sensing the intended user and to ignore the data unrelated to the primary user. For instance, if the user gets into bed after their partner has already fallen asleep, or if they use the restroom in the middle of the night, Halo Rise detects that and adjusts the sleep results accordingly.

Sleep intent detection

Another big algorithmic challenge we faced was determining when a user is quietly sitting in bed reading their Kindle or watching TV rather than trying to fall asleep. The time it takes to fall asleep (also known as sleep latency) is an important indicator of sleep health. Too short of a time may result from sleep deprivation, while too long of a time may be due to difficulty winding down.

To address this problem, we used a combination of presence and primary-user tracking along with a machine-learning model trained and evaluated on tens of thousands of hours of sleep diaries to accurately identify when the user is trying to sleep. The model uses sensor data streamed from the device — including respiration, movement, and distance — to generate a sleep intent score. The score is then post-processed by a regularized change-point detection algorithm to determine when the user is trying to fall asleep or wake up.

Halo Rise Sleep Intent v2.png
A machine learning model trained on thousands of hours of sleep uses respiration, movement, and distance data to generate a sleep intent score.

Sleep stage classification

Wearable health trackers like Halo Band and Halo View use heart rate and motion signals to determine sleep stages during the night, but Halo Rise uses respiration. To learn how to reliably recognize those stages, we needed to develop new machine learning models.

We pretrained a deep-learning model to predict sleep stages using a rich and diverse clinical dataset that included tens of thousands of hours of sleep collected by academic and research sources. The research included sleep data measured using the clinical gold standard, polysomnography (PSG). PSG studies use a large array of sensors attached to the body to measure sleep, including respiratory inductance plethysmography (RIP) sensors, whose output is analogous to the respiration data measured by Halo Rise.

Pretraining the model to predict sleep stages from RIP sensors enabled it to develop meaningful representations of the relationship between respiration and sleep prior to additional training on radar datasets collected alongside PSG. To collect radar training data for the models, we partnered with sleep clinics to conduct thousands of hours of PSG studies. Ultimately, this enables our models to classify sleep stages using just a built-in radar in the comfort of a customer’s home.

Halo_hypnogram.png
In the morning, customers can access a sleep hypnogram that provides a detailed breakdown of time spent in each sleep stage throughout the night.

A smarter wake-up experience

When woken naturally during a light sleep stage, people are most likely to feel rested, refreshed, and ready to tackle the day. Consequently, Halo Rise features a wake-up light, which gently simulates the colors and gradual brightening of a sunrise, and a smart alarm. Customers can also set an audible smart alarm that’s integrated with our sleep stage classification algorithms, optimizing their wake experience. Ahead of their scheduled wake-up time, the audible smart alarm monitors their sleep stages and wakes them up at their ideal time for getting up. This combination of wake-up light and smart alarm is shown to increase cognitive and physical performance throughout the day.

The smart-alarm algorithms are trained around two factors: sensing when the user is in light sleep and maximizing the user’s sleep duration. For the first component, Halo Rise needs to continuously monitor sleep stages during the alarm window — the 30 minutes before a user’s scheduled alarm — to identify when the user has entered a light sleep stage, known as the “wake window.”

At this phase, our algorithms work to sense “wakeable events,” such as a change in motion or breathing. This requires incrementally computing sleep stages to trigger the alarm with low latency. Unlike many sleep algorithms, Halo Rise does not require data from the entirety of the sleep session to classify sleep stages, allowing predictions to be used directly for alarm triggers as data is streamed.

For the second component, the system’s models are trained to predict the latest moment to trigger the alarm during the wake window. This ensures that as the user drifts between sleep stages, they are getting those crucial minutes of additional sleep before the alarm goes off.

The Halo Rise wake-up light
Halo Rise identifies a “wake window” when the user is in light sleep, while also maximizing sleep duration before activating an audible smart alarm.

A solution you can trust

To evaluate our machine learning algorithms, we collected thousands of hours of sleep studies comparing Halo Rise to PSG for over a hundred sleepers, developed with input from leading sleep labs. While sleep studies are typically conducted in sleep labs, we performed in-home PSG studies at participants’ homes under supervision of registered PSG technologists to test the device in naturalistic settings.

We used three different registered PSG technologists to reliably annotate ground truth sleep stages per the American Academy of Sleep Medicine’s scoring rules. We then compared Halo Rise’s outputs to the ground truth sleep data across 14 different sleep metrics — including time asleep, time awake, time to fall asleep, and accuracy for every 30 seconds — following analysis guidelines from a standardized framework for sleep stage classification assessment. This evaluation was supplemented by thousands of sleep diaries from our beta trials, expanding our evaluation to a diverse population of adults to account for variations in preferred sleep postures, age, body shapes, and other background conditions.

What’s next?

As we look to invent new products that help our customers live better longer, Halo Rise is an important step in giving our customers greater agency over their health and well-being. By looking holistically at the end-to-end sleep experience — not just going to sleep but also getting up in the morning — Halo Rise unlocks an entirely new way for customers to understand and manage sleep. We’re excited to help them make sense of valuable sleep data, from the quality and quantity of their sleep to their room’s environment, and deliver actionable insights and resources to improve it in the future. Halo Rise is just getting started, and we are going to learn from our customers how this technology can continue to evolve and become even more personalized to better meet their needs.

Research areas

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000