Amazon Halo Rise advances the future of sleep

Built-in radar technology, deep domain adaptation for sleep stage classification, and low-latency incremental sleep tracking enable Halo Rise to deliver a seamless, no-contact way to help customers improve sleep.

The benefits of quality sleep are well documented, and sleep affects nearly every aspect of our physical and emotional well-being. Yet one in three adults doesn’t get enough sleep. Given Amazon’s expertise in machine learning and radar technology innovation, we wanted to invent a device that would help customers improve their sleep by looking holistically at the factors that contribute to a good night’s rest.

That’s why we’re excited to announce that Amazon has unveiled its first dedicated sleep device — Halo Rise, a combined bedside sleep tracker, wake-up light, and smart alarm. Powered by custom machine learning algorithms and a suite of built-in sensors, Halo Rise accurately determines users’ sleep stages and provides valuable insights that can be used to optimize their sleep, including information about their sleep environments. Halo Rise has no sensors to wear, batteries to charge, or apps to open. And since a good wake-up experience is core to good sleep, Halo Rise features a wake-up light and smart alarm, designed to help customers start the day feeling rested and alert.

Halo Rise in action
A built-in radar sensor uses ultralow-power radio signals to sense respiration and movement patterns and determine sleep stages.

Designing with customer trust as our foundation

Customer privacy and safety are foundational to Halo Rise, and that's evident in both the hardware design and the technologies used to power the experience. Halo Rise features neither a camera nor a microphone and instead relies on ambient radar technology and machine learning to accurately determine sleep stages: deep, light, REM (rapid eye movement), and awake.

The technology at the core of Halo Rise is a built-in radar sensor that safely emits and receives an ultralow-power radio signal. The sensor uses phase differences between reflected signals at different antennas to measure movement and distance. Through on-chip signal processing, Halo Rise produces a discrete waveform corresponding to the user’s respiration. The device cannot detect noise or visual identifiers associated with an individual user, such as body images.

Using built-in radar technology enables us to prioritize customer privacy while still delivering accurate measurements and useful results. Customers have the option to manually put Halo Rise into Standby mode, which turns off the device’s ability to detect someone’s presence or track sleep.

Halo Rise hardware design
Halo Rise features a suite of sensors to accurately track your sleep and measure your room’s temperature, humidity, and light levels. 

Intuitive and accurate experience

To design the sleep-tracking algorithm that powers Halo Rise, we thought about the most common bedtime behaviors and the ways in which customers and their families (pets included) might engage with the bedroom. This led us to innovate on five main technological fronts:

  • Presence detection: Halo Rise activates its sleep detection only when someone is in range of the sensor. Otherwise, the device remains in a monitoring mode, where no data is transmitted to the cloud.
  • Primary-user tracking: Halo Rise distinguishes the sleep of the primary user (the user closest to the device) from that of other people or pets in the same bed, even though the respiration signal cannot be associated with individual users.
  • Sleep intent detection: Halo Rise detects when the user first starts trying to sleep and distinguishes that attempt from other in-bed activities — such as reading or watching TV — to accurately measure the time it takes to fall asleep, an important indicator of sleep health.
  • Sleep stage classification: Halo Rise reliably correlates respiration-driven movement signals with sleep stages.
  • Smart-alarm integration: During the user’s alarm window, the Halo Rise smart alarm checks the user’s sleep stage every few minutes to detect light sleep, while also maximizing sleep duration.
Halo-Vienna-MM_Wave-Chart.png
A combination of breathing and movement patterns enables Halo Rise to determine the primary user for the sleep session and to measure that person’s sleep throughout the night.

Presence detection

Halo Rise has an easy setup process. To get started, a customer will place Halo Rise on their bedside table facing their chest and note in the Amazon Halo app what side of the bed they sleep on — and that’s it: Halo Rise is ready to go. The radar sensor detects motion within a 3-D geometric volume that fans out from the sensor, an area called the detection zone. Within this zone, the presence detection algorithm estimates the location of the bed and an “out-of-bed” area between the bed and the device.

On-chip algorithms detect the motion and location of respiration events within the detection zone. In both cases — motion and respiration — the algorithm evaluates the quality of the signals. On that basis, it computes a score indicating its confidence that the readings are reliable and a user is present. Only if the confidence score crosses a reliability threshold does Halo Rise begin streaming sensor data to the cloud, where it is processed by the primary-user-tracking algorithm.

Radar Fan.png
The Halo Rise detection zone is the region within which the radar sensor senses motion and location.

Primary-user tracking

We know that many of our customers share their beds, be it with other people or with pets, so our algorithms are designed to track the sleep of only the primary user. Halo Rise starts a sleep session after it detects someone’s presence within the detection zone for longer than five minutes. From there, the primary-user-tracking algorithm runs continuously in the background, sensing the closest user’s sleep stages. As long as the user sleeps on their side of the bed, and their partner sleeps on the other side, Halo Rise will track the primary user’s sleep quality irrespective of who comes to bed first and who leaves the bed last.

During the sleep session, Halo Rise dynamically monitors changes in the user’s distance from the sensor, the respiration signal quality, and abrupt changes in respiration patterns that indicate another person’s presence. These changes cause the algorithm to reassess whether it’s actually sensing the intended user and to ignore the data unrelated to the primary user. For instance, if the user gets into bed after their partner has already fallen asleep, or if they use the restroom in the middle of the night, Halo Rise detects that and adjusts the sleep results accordingly.

Sleep intent detection

Another big algorithmic challenge we faced was determining when a user is quietly sitting in bed reading their Kindle or watching TV rather than trying to fall asleep. The time it takes to fall asleep (also known as sleep latency) is an important indicator of sleep health. Too short of a time may result from sleep deprivation, while too long of a time may be due to difficulty winding down.

To address this problem, we used a combination of presence and primary-user tracking along with a machine-learning model trained and evaluated on tens of thousands of hours of sleep diaries to accurately identify when the user is trying to sleep. The model uses sensor data streamed from the device — including respiration, movement, and distance — to generate a sleep intent score. The score is then post-processed by a regularized change-point detection algorithm to determine when the user is trying to fall asleep or wake up.

Halo Rise Sleep Intent v2.png
A machine learning model trained on thousands of hours of sleep uses respiration, movement, and distance data to generate a sleep intent score.

Sleep stage classification

Wearable health trackers like Halo Band and Halo View use heart rate and motion signals to determine sleep stages during the night, but Halo Rise uses respiration. To learn how to reliably recognize those stages, we needed to develop new machine learning models.

We pretrained a deep-learning model to predict sleep stages using a rich and diverse clinical dataset that included tens of thousands of hours of sleep collected by academic and research sources. The research included sleep data measured using the clinical gold standard, polysomnography (PSG). PSG studies use a large array of sensors attached to the body to measure sleep, including respiratory inductance plethysmography (RIP) sensors, whose output is analogous to the respiration data measured by Halo Rise.

Pretraining the model to predict sleep stages from RIP sensors enabled it to develop meaningful representations of the relationship between respiration and sleep prior to additional training on radar datasets collected alongside PSG. To collect radar training data for the models, we partnered with sleep clinics to conduct thousands of hours of PSG studies. Ultimately, this enables our models to classify sleep stages using just a built-in radar in the comfort of a customer’s home.

Halo_hypnogram.png
In the morning, customers can access a sleep hypnogram that provides a detailed breakdown of time spent in each sleep stage throughout the night.

A smarter wake-up experience

When woken naturally during a light sleep stage, people are most likely to feel rested, refreshed, and ready to tackle the day. Consequently, Halo Rise features a wake-up light, which gently simulates the colors and gradual brightening of a sunrise, and a smart alarm. Customers can also set an audible smart alarm that’s integrated with our sleep stage classification algorithms, optimizing their wake experience. Ahead of their scheduled wake-up time, the audible smart alarm monitors their sleep stages and wakes them up at their ideal time for getting up. This combination of wake-up light and smart alarm is shown to increase cognitive and physical performance throughout the day.

The smart-alarm algorithms are trained around two factors: sensing when the user is in light sleep and maximizing the user’s sleep duration. For the first component, Halo Rise needs to continuously monitor sleep stages during the alarm window — the 30 minutes before a user’s scheduled alarm — to identify when the user has entered a light sleep stage, known as the “wake window.”

At this phase, our algorithms work to sense “wakeable events,” such as a change in motion or breathing. This requires incrementally computing sleep stages to trigger the alarm with low latency. Unlike many sleep algorithms, Halo Rise does not require data from the entirety of the sleep session to classify sleep stages, allowing predictions to be used directly for alarm triggers as data is streamed.

For the second component, the system’s models are trained to predict the latest moment to trigger the alarm during the wake window. This ensures that as the user drifts between sleep stages, they are getting those crucial minutes of additional sleep before the alarm goes off.

The Halo Rise wake-up light
Halo Rise identifies a “wake window” when the user is in light sleep, while also maximizing sleep duration before activating an audible smart alarm.

A solution you can trust

To evaluate our machine learning algorithms, we collected thousands of hours of sleep studies comparing Halo Rise to PSG for over a hundred sleepers, developed with input from leading sleep labs. While sleep studies are typically conducted in sleep labs, we performed in-home PSG studies at participants’ homes under supervision of registered PSG technologists to test the device in naturalistic settings.

We used three different registered PSG technologists to reliably annotate ground truth sleep stages per the American Academy of Sleep Medicine’s scoring rules. We then compared Halo Rise’s outputs to the ground truth sleep data across 14 different sleep metrics — including time asleep, time awake, time to fall asleep, and accuracy for every 30 seconds — following analysis guidelines from a standardized framework for sleep stage classification assessment. This evaluation was supplemented by thousands of sleep diaries from our beta trials, expanding our evaluation to a diverse population of adults to account for variations in preferred sleep postures, age, body shapes, and other background conditions.

What’s next?

As we look to invent new products that help our customers live better longer, Halo Rise is an important step in giving our customers greater agency over their health and well-being. By looking holistically at the end-to-end sleep experience — not just going to sleep but also getting up in the morning — Halo Rise unlocks an entirely new way for customers to understand and manage sleep. We’re excited to help them make sense of valuable sleep data, from the quality and quantity of their sleep to their room’s environment, and deliver actionable insights and resources to improve it in the future. Halo Rise is just getting started, and we are going to learn from our customers how this technology can continue to evolve and become even more personalized to better meet their needs.

Research areas

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE