The book cover of the recently released Modern Business Analytics textbook,  and photos of its coauthors, Matt Taddy, Leslie Hendrix, and Matthew C. Harding.
Matt Taddy (top right), vice president of Amazon's Private Brands business, is the coauthor of a recently released data-science textbook, Modern Business Analytics, along with Leslie Hendrix (middle right), and Matthew C. Harding.

New data-science textbook explains the ‘why’, rather than the ‘what’ of decision-making

Matt Taddy, vice president of Amazon’s Private Brands business, is the coauthor of Modern Business Analytics: Practical Data Science for Decision Making, a primer for those who want to gain the skills to use data science to help make decisions in business and beyond.

When Matt Taddy earned his PhD in applied mathematics and statistics from the University of California, Santa Cruz, in 2008, the notion of a data-science specialization was still in its infancy.

Today, the business-analytics profession, or the discipline of using data to make business, public policy, public health, and other decisions, is blossoming, and Taddy is excited about how the field is becoming more multi-disciplinary, incorporating statistics, machine learning, economics, and even the social sciences.

“I benefitted from getting involved in the early stages before it became more specialized,” says Taddy.

Related content
Matt Taddy, the chief economist for Amazon’s North America Consumer organization, talks about his recent book, and explains why economists should consider pursuing a career at the company.

Since earning his PhD, Taddy has been a research assistant at NASA Ames Research Center and Sandia National Laboratories, a research fellow at eBay, the head of economics and data science for Business AI at Microsoft, a professor of econometrics and statistics at the University of Chicago Booth School of Business, the chief economist for Amazon’s North America Consumer organization, and now vice president of Amazon’s Private Brands business. His first textbook, Business Data Science, was published by McGraw Hill in 2019. At the time, he told Amazon Science that he began work on the book ten years prior when teaching a class of MBA students at the University of Chicago.

“I realized that there was an appetite for the material covered in the book from people who weren’t specialists in statistics or machine learning,” he said. “This idea that we could teach this material to non-specialists really motivated me not to just write this book, but also to push for changing the curriculum at the University of Chicago.”

Since publishing that textbook in 2019, his role at Amazon has evolved as has his interest in making great decisions from data. The result is a new textbook, Modern Business Analytics: Practical Data Science for Decision Making, which Taddy co-authored with Leslie Hendrix, PhD, associate professor at the Darla Moore School of Business at the University of South Carolina, and Matthew C. Harding, PhD, professor of economics and statistics at the University of California, Irvine.

According to the authors, “This book is a primer for those who want to gain the skills to use data science to help make decisions in business and beyond. The modern business analyst uses tools from machine learning, economics, and statistics to not only track what has happened but predict the future for their businesses.”

McGraw Hill, the book’s publisher, says: “This new higher-ed text takes a practical, modern approach to data science and business analytics for the analytics student and professional. It gives students the opportunity to learn by doing, with real data analysis examples that explain the ‘why’, rather than the ‘what’ in decision-making discussions. It uses R as the primary technology through the text and includes an end-of-chapter reference to the basic R recipes in each chapter. Modern Business Analytics: Practical Data Science for Decision Making has crossed the boundaries and created something truly interdisciplinary.”

Amazon Science connected with Taddy to discuss how his thinking about the topic has evolved in the past three years, his belief that deeper business decisions require focusing on why things happen versus what has happened, and how he’s applying modern business analytics techniques in running Amazon’s Private Brands business.

  1. Q. 

    In 2019 you authored Business Data Science that brought together concepts from statistics, machine learning, and the social sciences to help businesses use data more effectively. How has your thinking evolved in the past three years? And how does Modern Business Analytics address that?

    A. 

    Modern Business Analytics is a direct follow to Business Data Science. From Business Data Science we learned there is an audience, but I received feedback from a number of professors who, for example, were teaching from Business Data Science for MBA classes, or advanced undergraduate data-science classes, or master’s in public policy programs, that we didn’t really deliver the content in a format that was accessible to a broader audience.

    McGraw Hill approached me again and said there was an opportunity to do a better job serving a wider audience and asked if I would be interested. My response was ‘Of course. One reason I did the book initially was to try and hit the widest audience possible.’ Recognizing that I’m busy with my day job here at Amazon, McGraw Hill suggested I approach co-authors to help with content development. Fortunately, both Leslie and Matthew agreed to contribute. Matthew teaches from this book in an MBA program at the University of California, Irvine, and Leslie teaches from a version of this book for a business-analytics program at the University of South Carolina.

    They've both experienced the challenges of onboarding students who have no exposure to programming languages, or students who are less proficient in math than the students I was originally exposed to when I wrote the material for Business Data Science. Leslie and Matthew brought a great new perspective to the project. Generally, you're never happy with the first version of anything. Leslie and Matthew helped simplify some of the explanations provided in the previous book and contributed more examples. From my experience this is what students benefit from the most. The result: we were able to include many more real-world examples into Modern Business Analytics and make the new book far more accessible to a broader audience.

    In education it often takes a while for someone to develop an introductory-level book that pulls material from multiple disciplines and brings readers to the current state of the art. That’s what we challenged ourselves to deliver here. Our audience is anyone who wants to get the skills to use modern large-scale data to make decisions, whether they are in business, government, science, or anywhere else.

  2. Q. 

    It would seem that today's modern business analyst must be multidisciplinary, with machine learning, economics, statistics, and other skills. What’s the skill set you look for?

    A. 

    I haven’t found an individual with all of those ingredients in equal measure. It is more about how you build a team with a diversity of skills and backgrounds. Data scientists, research scientists, applied scientists, and economists all use the tools that we discuss in the book. When you’re building a team focused on making decisions from data, you don’t want individuals with the same skills. You want individuals with different levels of emphasis. Some are going to have a much stronger background in computer science. They're going to understand the algorithms component better. Others are going to have a stronger background in uncertainty quantification and the mathematics of what I refer to as modern statistics. Some will have an economics background element. Others will be comfortable addressing causal inference and structural analysis.

    What’s been really exciting about data science in the past 10 years is that we've created a common vocabulary so individuals from many disciplines can talk to each other. Today, you can build a team that has economists, applied scientists, research scientists, machine learning engineers, and data scientists working together to address a common challenge. When I first got into data science more than a decade ago this common vocabulary didn’t exist. There was a real boundary to working on data across disciplines. Fortunately, much of this has gone away. Now the economists and the machine-learning practitioners speak the same lingo making it much easier to build the diverse teams required to make decisions from data.

    I mentioned causal inference and structural analysis previously and want to point out another aspect of the book that is unique. A lot of work inside a tech company can focus on pure prediction, what I would consider standard machine learning problems where you want to discover patterns in correlation. For a broader audience beyond machine learners, we need to understand how to make policy decisions – how to use data to decide between option A or option B. For that type of decision-making you really have to get into the structure of why things are happening.

    I took that seriously in the first book and doubled down on it with this book. For example, we have a chapter that’s dedicated to either fully randomized experiments or quasi experimental settings. These are A/B experiments, or what we refer to at Amazon as Weblabs. If you’re familiar with these experiments you know they aren’t nearly as simple as the term A/B implies. There's a lot of complexity to these experiments — how you run them, how you analyze them. As a result, we focus a lot of attention on how to structure these A/B style trials and how you analyze data that has some experimental randomization as part of it.

    Related publication
    We consider dynamic pricing with many products under an evolving but low-dimensional demand model. Assuming the temporal variation in cross-elasticities exhibits low-rank structure based on fixed (latent) features of the products, we show that the revenue maximization problem reduces to an online bandit convex optimization with side information given by the observed demands. We design dynamic pricing algorithms

    Another chapter is devoted to understanding why things are happening when you’re working from purely observational data. Here we go deep into some of the methods we use heavily in industry — orthogonal or double machine learning using high dimensional control sets and other things such as synthetic controls. This chapter codifies the methods for utilizing causal analysis and structural analysis in observational settings. As mentioned previously, I think this differentiates the book from others for this audience. Causal inference can be intimidating and you don’t often see it addressed at this level. It will be a high bar for some students, but the feedback we’ve received from professors who are teaching from early versions of our work is that students, especially those with some industry experience, are really attracted to the material. The students are attracted to it because they have worked in industry and know how important it is to be able to properly conduct experiments and perform causal analyses.

  3. Q. 

    Can you provide some context about Amazon’s Private Brands business, and how you’re applying modern business analytics to make better decisions for your business.

    A. 

    I took over the role leading our worldwide Private Brands organization within the last year and much of what we do is seemingly simple, straightforward customer-centric product development. When I think about our business, I think about what product assortment we need in the long term. To determine this, I have to understand what products our customers expect from Amazon private brands and what they are able to get in private-label format from our competitors. Those are fairly straightforward business questions to address. Our customers expect us to have really attractive prices, so we need to ensure that our customers find sharp every-day low prices for the products that we're providing. And our customers expect quality. We need to make sure that they are getting the quality they expect and that our manufacturers are getting feedback from customers that allows them to produce better products.

    That all sounds like pretty vanilla stuff. I could be talking about any number of MBA case studies and all of our competitor retailers are asking similar questions of their private label businesses.

    I want us to build the ML services that allow us to quickly determine from customer feedback where there might be issues or opportunities anywhere in our production.
    Matt Taddy

    But then I think about how I can use data and science to help me make the right decisions. Go back to my first question. How do I understand what customers expect to find? It’s not straightforward. Can the data tell us that our customers perceive our product as competitively priced even though it comes in a different bottle, it's got a different formulation, and there might be quality differences? It turns out that, yes, we can use data and ML to understand how customers evaluate the value proposition of our products. This information is useful both in how we build products and how we price them.

    Related content
    Amazon's Daliana Liu helps others in the field chart their own paths.

    Another idea that’s super exciting to me, and which seems obvious, is you need customer feedback to improve your products. At Amazon we get feedback on a very large scale. We get it through customer reviews. We can use ML and statistics to dive deep into that information and use it to produce anecdotes and feedback signals that we use to improve the quality, pricing, and overall customer experience for our products. All of our competitor retailers building private label products are asking the same questions about how to improve products for customers. But at Amazon Private Brands we’re asking how we can do this analysis faster and in a more automated fashion to quickly get the insights back to our manufacturers.

    Today, we implement traditional quality processes that you would expect from any large manufacturer. We are with the best in class there. That said, we can go much further filtering all of the customer information we're getting through reviews and use it to inform our manufacturing partners to start this process of continual improvement and close the gap between customers and manufacturers. I want us to build the ML services that allow us to quickly determine from customer feedback where there might be issues or opportunities anywhere in our production. We make shampoo. We make toilet paper. We make batteries. We make T-shirts. We make a large variety of products, and we come at it from a very Amazonian point of view which is to apply a data-centric mindset. And that, in turn, leads us to concepts from the book.

    Access sample chapters

    Want to explore learn more about the recently released textbook Modern Business Analytics ? Click here to learn more about each chapter, and to access sample chapters.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, NY, New York
Job summaryAmazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day!The Advertising Modeling, Optimization and Data Science team enhances Advertising teams’ decision-making by providing an exhaustive suite of analytics and automation products, and by extracting meaning from Amazon Advertising’s global operations. We own and operate a large-scale AWS-based data infrastructure that acts as a pivot to Worldwide operations, enabling critical downstream applications in ad management, design, billing, as well as customer feedback, software infrastructure, and more. The team consists of Business Intelligence Engineers, Data Scientists, and Data Engineers, who work together to improve our Advertisers' and Shoppers' experience with Amazon Advertising by accompanying and supporting the analytical needs of our partner teams.As a Senior Data Scientist on this team you will:Lead Data Science solutions from beginning to end.Deliver with independence on challenging large-scale problems with complexity and ambiguity.Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data.Build Machine Learning and statistical models to solve specific business problems.Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance.Analyze historical data to identify trends and support optimal decision making.Apply statistical and machine learning knowledge to specific business problems and data.Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed.Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes.Build decision-making models and propose effective solutions for the business problems you define.Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication.Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate.Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
Job summaryAmazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products are strategically important to our businesses driving long term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day!The Machine Learning Optimization (MLO) team develops algorithms and systems that improve the performance and delivery of Amazon’s Display Advertising campaigns and automates campaign management using machine learning techniques. The team develops and deploys machine learning solutions that drive ad selection, bidding, user response prediction, and automated campaign management. Customers are advertisers and publishers who do business with Amazon.We own the system for batch training of user response prediction models, while the ad serving engineering team owns the real-time model scoring component. This teams owns the system for automated management of advertising campaigns, which can dynamically adjust parameters such as budget, bid prices, and targeting to optimize for campaign performance.As an Applied Scientist on this team, you will: Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity.Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience.Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models.Run A/B experiments, gather data, and perform statistical analysis.Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving.Research new and innovative machine learning approaches.Recruit Applied Scientists to the team and provide mentorship.Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate.Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.Team video https://youtu.be/zD_6Lzw8raE Advanced degree in Computer Science, Mathematics, Statistics, Economics, or related quantitative field.Published research work in academic conferences or industry circles.Experience in building large-scale machine-learning models and infra for online recommendation, ads ranking, personalization, or search, etc.Effective verbal and written communication skills with non-technical and technical audiences.Experience working with large real-world data sets and building scalable models from big data.Thinks strategically, but stays on top of tactical execution.Exhibits excellent business judgment; balances business, product, and technology very well.Experience in computational advertising.Key job responsibilitiesYou will work on the next generation of our real-time pricing systems. These systems are optimizing the price of every individual opportunity on behalf of Amazon Advertising advertisers. A day in the lifeConduct offline analysis of data to guide design decisions with the product teamConduct A/B test setup and analyze results to guide rollout, go to market or development priority decisionsSuggest and implement models to sophisticate the advertising products we offer to our customersAbout the teamThe Ranking team is responsible for real-time pricing decisions on the Amazon RTB (Real-Time Bidding) system
US, WA, Seattle
Job summaryAre you excited about joining a team of scientists building lasting solutions for Amazon customers from the ground up? Our team is using machine learning, and statistical methods to take Amazon’s unique customer obsession culture to another level by designing solutions that change customers behavior when it comes to product search, discovery, and purchase. In order to achieve this, we need scientists who will help us build advanced algorithms that deliver first-rate user experience during customers’ shopping journeys on Amazon, and subsequently make Amazon their default starting point for future shopping journeys. These algorithms will utilize advances in Natural Language Understanding, and Computer Vision to source and understand contents that customers trust, and furnish customers with these contents in a way that is precisely tailored to their individual needs at any stage of their shopping journey. Key job responsibilitiesWe are looking for an Applied Scientist to join our rapidly growing Seattle team. As an Applied Scientist, you are able to use a range of science methodologies in NLP/CV to solve challenging business problems when the solution is unclear. For example, you may lead the development of reinforcement learning models such as MAB to rank content to be shown to customers based on their queries. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as SageMaker, S3, and EC2 with a variety of skillsets in shallow and deep learning ML models, particularly in NLP and CV. You will bring knowledge in many of these domains along with your own specialties and skilset.Major responsibilities:Use statistical and machine learning techniques to create scalable and lasting systems.Analyze and understand large amounts of Amazon’s historical business data for Recommender/Matching algorithmsDesign, develop and evaluate highly innovative models for NLP.Work closely with teams of scientists and software engineers to drive real-time model implementations and new feature creations.Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and implementation.Research and implement novel machine learning and statistical approaches, including NLP and Computer VisionA day in the lifeIn this role, you’ll be utilizing your NLP or CV skills, and creative and critical problem-solving skills to drive new projects from ideation to implementation. Your science expertise will be leveraged to research and deliver often novel solutions to existing problems, explore emerging problems spaces, and create or organize knowledge around them. About the teamOur team puts a high value on your work and personal life happiness. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of you. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to establish your own harmony between your work and personal life.
US, WA, Seattle
Job summaryAre you excited about joining a team of scientists building lasting solutions for Amazon customers from the ground up? Our team is using machine learning, and statistical methods to take Amazon’s unique customer obsession culture to another level by designing solutions that change customers behavior when it comes to product search, discovery, and purchase. In order to achieve this, we need scientists who will help us build advanced algorithms that deliver first-rate user experience during customers’ shopping journeys on Amazon. These algorithms will utilize advances in Natural Language Understanding, and Computer Vision to source and understand content that customers trust, and furnish customers with the content in a way that meets their needs at any stage of their shopping journey. Key job responsibilitiesUse statistical and machine learning techniques to create scalable and lasting systems.Analyze and understand large amounts of Amazon’s historical business data for Recommender/Matching algorithmsDesign, develop and evaluate highly innovative - Work closely with teams of scientists and software engineers to drive real-time model implementationsEstablish scalable, efficient, automated processes for large scale data analyses, model development, model validation and implementation.Research and implement novel machine learning and statistical approaches, including NLP and Computer VisionA day in the lifeIn this role, you’ll be utilizing your NLP or CV skills, and creative and critical problem-solving skills to drive new projects from ideation to implementation. Your science expertise will be leveraged to research and deliver often novel solutions to existing problems, explore emerging problems spaces, and create or organize knowledge around them. About the teamOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future.We put a high value on your work and personal life happiness. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of you. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to establish your own harmony between your work and personal life.