The book cover of the recently released Modern Business Analytics textbook,  and photos of its coauthors, Matt Taddy, Leslie Hendrix, and Matthew C. Harding.
Matt Taddy (top right), vice president of Amazon's Private Brands business, is the coauthor of a recently released data-science textbook, Modern Business Analytics, along with Leslie Hendrix (middle right), and Matthew C. Harding.

New data-science textbook explains the ‘why’, rather than the ‘what’ of decision-making

Matt Taddy, vice president of Amazon’s Private Brands business, is the coauthor of Modern Business Analytics: Practical Data Science for Decision Making, a primer for those who want to gain the skills to use data science to help make decisions in business and beyond.

When Matt Taddy earned his PhD in applied mathematics and statistics from the University of California, Santa Cruz, in 2008, the notion of a data-science specialization was still in its infancy.

Today, the business-analytics profession, or the discipline of using data to make business, public policy, public health, and other decisions, is blossoming, and Taddy is excited about how the field is becoming more multi-disciplinary, incorporating statistics, machine learning, economics, and even the social sciences.

“I benefitted from getting involved in the early stages before it became more specialized,” says Taddy.

Related content
Matt Taddy, the chief economist for Amazon’s North America Consumer organization, talks about his recent book, and explains why economists should consider pursuing a career at the company.

Since earning his PhD, Taddy has been a research assistant at NASA Ames Research Center and Sandia National Laboratories, a research fellow at eBay, the head of economics and data science for Business AI at Microsoft, a professor of econometrics and statistics at the University of Chicago Booth School of Business, the chief economist for Amazon’s North America Consumer organization, and now vice president of Amazon’s Private Brands business. His first textbook, Business Data Science, was published by McGraw Hill in 2019. At the time, he told Amazon Science that he began work on the book ten years prior when teaching a class of MBA students at the University of Chicago.

“I realized that there was an appetite for the material covered in the book from people who weren’t specialists in statistics or machine learning,” he said. “This idea that we could teach this material to non-specialists really motivated me not to just write this book, but also to push for changing the curriculum at the University of Chicago.”

Since publishing that textbook in 2019, his role at Amazon has evolved as has his interest in making great decisions from data. The result is a new textbook, Modern Business Analytics: Practical Data Science for Decision Making, which Taddy co-authored with Leslie Hendrix, PhD, associate professor at the Darla Moore School of Business at the University of South Carolina, and Matthew C. Harding, PhD, professor of economics and statistics at the University of California, Irvine.

According to the authors, “This book is a primer for those who want to gain the skills to use data science to help make decisions in business and beyond. The modern business analyst uses tools from machine learning, economics, and statistics to not only track what has happened but predict the future for their businesses.”

McGraw Hill, the book’s publisher, says: “This new higher-ed text takes a practical, modern approach to data science and business analytics for the analytics student and professional. It gives students the opportunity to learn by doing, with real data analysis examples that explain the ‘why’, rather than the ‘what’ in decision-making discussions. It uses R as the primary technology through the text and includes an end-of-chapter reference to the basic R recipes in each chapter. Modern Business Analytics: Practical Data Science for Decision Making has crossed the boundaries and created something truly interdisciplinary.”

Amazon Science connected with Taddy to discuss how his thinking about the topic has evolved in the past three years, his belief that deeper business decisions require focusing on why things happen versus what has happened, and how he’s applying modern business analytics techniques in running Amazon’s Private Brands business.

  1. Q. 

    In 2019 you authored Business Data Science that brought together concepts from statistics, machine learning, and the social sciences to help businesses use data more effectively. How has your thinking evolved in the past three years? And how does Modern Business Analytics address that?

    A. 

    Modern Business Analytics is a direct follow to Business Data Science. From Business Data Science we learned there is an audience, but I received feedback from a number of professors who, for example, were teaching from Business Data Science for MBA classes, or advanced undergraduate data-science classes, or master’s in public policy programs, that we didn’t really deliver the content in a format that was accessible to a broader audience.

    McGraw Hill approached me again and said there was an opportunity to do a better job serving a wider audience and asked if I would be interested. My response was ‘Of course. One reason I did the book initially was to try and hit the widest audience possible.’ Recognizing that I’m busy with my day job here at Amazon, McGraw Hill suggested I approach co-authors to help with content development. Fortunately, both Leslie and Matthew agreed to contribute. Matthew teaches from this book in an MBA program at the University of California, Irvine, and Leslie teaches from a version of this book for a business-analytics program at the University of South Carolina.

    They've both experienced the challenges of onboarding students who have no exposure to programming languages, or students who are less proficient in math than the students I was originally exposed to when I wrote the material for Business Data Science. Leslie and Matthew brought a great new perspective to the project. Generally, you're never happy with the first version of anything. Leslie and Matthew helped simplify some of the explanations provided in the previous book and contributed more examples. From my experience this is what students benefit from the most. The result: we were able to include many more real-world examples into Modern Business Analytics and make the new book far more accessible to a broader audience.

    In education it often takes a while for someone to develop an introductory-level book that pulls material from multiple disciplines and brings readers to the current state of the art. That’s what we challenged ourselves to deliver here. Our audience is anyone who wants to get the skills to use modern large-scale data to make decisions, whether they are in business, government, science, or anywhere else.

  2. Q. 

    It would seem that today's modern business analyst must be multidisciplinary, with machine learning, economics, statistics, and other skills. What’s the skill set you look for?

    A. 

    I haven’t found an individual with all of those ingredients in equal measure. It is more about how you build a team with a diversity of skills and backgrounds. Data scientists, research scientists, applied scientists, and economists all use the tools that we discuss in the book. When you’re building a team focused on making decisions from data, you don’t want individuals with the same skills. You want individuals with different levels of emphasis. Some are going to have a much stronger background in computer science. They're going to understand the algorithms component better. Others are going to have a stronger background in uncertainty quantification and the mathematics of what I refer to as modern statistics. Some will have an economics background element. Others will be comfortable addressing causal inference and structural analysis.

    What’s been really exciting about data science in the past 10 years is that we've created a common vocabulary so individuals from many disciplines can talk to each other. Today, you can build a team that has economists, applied scientists, research scientists, machine learning engineers, and data scientists working together to address a common challenge. When I first got into data science more than a decade ago this common vocabulary didn’t exist. There was a real boundary to working on data across disciplines. Fortunately, much of this has gone away. Now the economists and the machine-learning practitioners speak the same lingo making it much easier to build the diverse teams required to make decisions from data.

    I mentioned causal inference and structural analysis previously and want to point out another aspect of the book that is unique. A lot of work inside a tech company can focus on pure prediction, what I would consider standard machine learning problems where you want to discover patterns in correlation. For a broader audience beyond machine learners, we need to understand how to make policy decisions – how to use data to decide between option A or option B. For that type of decision-making you really have to get into the structure of why things are happening.

    I took that seriously in the first book and doubled down on it with this book. For example, we have a chapter that’s dedicated to either fully randomized experiments or quasi experimental settings. These are A/B experiments, or what we refer to at Amazon as Weblabs. If you’re familiar with these experiments you know they aren’t nearly as simple as the term A/B implies. There's a lot of complexity to these experiments — how you run them, how you analyze them. As a result, we focus a lot of attention on how to structure these A/B style trials and how you analyze data that has some experimental randomization as part of it.

    Related publication
    We consider dynamic pricing with many products under an evolving but low-dimensional demand model. Assuming the temporal variation in cross-elasticities exhibits low-rank structure based on fixed (latent) features of the products, we show that the revenue maximization problem reduces to an online bandit convex optimization with side information given by the observed demands. We design dynamic pricing algorithms

    Another chapter is devoted to understanding why things are happening when you’re working from purely observational data. Here we go deep into some of the methods we use heavily in industry — orthogonal or double machine learning using high dimensional control sets and other things such as synthetic controls. This chapter codifies the methods for utilizing causal analysis and structural analysis in observational settings. As mentioned previously, I think this differentiates the book from others for this audience. Causal inference can be intimidating and you don’t often see it addressed at this level. It will be a high bar for some students, but the feedback we’ve received from professors who are teaching from early versions of our work is that students, especially those with some industry experience, are really attracted to the material. The students are attracted to it because they have worked in industry and know how important it is to be able to properly conduct experiments and perform causal analyses.

  3. Q. 

    Can you provide some context about Amazon’s Private Brands business, and how you’re applying modern business analytics to make better decisions for your business.

    A. 

    I took over the role leading our worldwide Private Brands organization within the last year and much of what we do is seemingly simple, straightforward customer-centric product development. When I think about our business, I think about what product assortment we need in the long term. To determine this, I have to understand what products our customers expect from Amazon private brands and what they are able to get in private-label format from our competitors. Those are fairly straightforward business questions to address. Our customers expect us to have really attractive prices, so we need to ensure that our customers find sharp every-day low prices for the products that we're providing. And our customers expect quality. We need to make sure that they are getting the quality they expect and that our manufacturers are getting feedback from customers that allows them to produce better products.

    That all sounds like pretty vanilla stuff. I could be talking about any number of MBA case studies and all of our competitor retailers are asking similar questions of their private label businesses.

    I want us to build the ML services that allow us to quickly determine from customer feedback where there might be issues or opportunities anywhere in our production.
    Matt Taddy

    But then I think about how I can use data and science to help me make the right decisions. Go back to my first question. How do I understand what customers expect to find? It’s not straightforward. Can the data tell us that our customers perceive our product as competitively priced even though it comes in a different bottle, it's got a different formulation, and there might be quality differences? It turns out that, yes, we can use data and ML to understand how customers evaluate the value proposition of our products. This information is useful both in how we build products and how we price them.

    Related content
    Amazon's Daliana Liu helps others in the field chart their own paths.

    Another idea that’s super exciting to me, and which seems obvious, is you need customer feedback to improve your products. At Amazon we get feedback on a very large scale. We get it through customer reviews. We can use ML and statistics to dive deep into that information and use it to produce anecdotes and feedback signals that we use to improve the quality, pricing, and overall customer experience for our products. All of our competitor retailers building private label products are asking the same questions about how to improve products for customers. But at Amazon Private Brands we’re asking how we can do this analysis faster and in a more automated fashion to quickly get the insights back to our manufacturers.

    Today, we implement traditional quality processes that you would expect from any large manufacturer. We are with the best in class there. That said, we can go much further filtering all of the customer information we're getting through reviews and use it to inform our manufacturing partners to start this process of continual improvement and close the gap between customers and manufacturers. I want us to build the ML services that allow us to quickly determine from customer feedback where there might be issues or opportunities anywhere in our production. We make shampoo. We make toilet paper. We make batteries. We make T-shirts. We make a large variety of products, and we come at it from a very Amazonian point of view which is to apply a data-centric mindset. And that, in turn, leads us to concepts from the book.

    Access sample chapters

    Want to explore learn more about the recently released textbook Modern Business Analytics ? Click here to learn more about each chapter, and to access sample chapters.

Research areas

Related content

ES, Barcelona
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Key job responsibilities - Develop multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Science Manager to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will lead a strong science team and work closely with other science and engineering leaders, product and business partners together to build the best personalized customer experience for Prime Video. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Lead to develop AI solutions for various Prime Video recommendation and personalization systems using Deep learning, GenAI, Reinforcement Learning, recommendation system and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Hire and grow a science team working in this exciting video personalization domain. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will be responsible for leading the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Sr. Data Scientist you will invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include entity resolution, agentic AI, large language models, and product substitutes. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As an Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - Participate in the design, development, evaluation, deployment and updating of data-driven models for computer vision applications. - Research and implement the state-of-the-art computer vision and Vision Language models algorithms. - Collaborate with product managers and engineering teams to design and implement computer vision and machine learning based features for Ring devices - Influence system design and product vision by making informed decisions on the selection of technology, data sources, algorithms, and sensors.
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. You will be part of a team committed to pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work on scale. This position requires experience with developing Multi-modal LLMs and Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - Participate in the design, development, evaluation, deployment and updating of data-driven models for computer vision applications. - Research and implement the state-of-the-art computer vision and Vision Language models algorithms. - Collaborate with product managers and engineering teams to design and implement computer vision and machine learning based features for Ring devices - Influence system design and product vision by making informed decisions on the selection of technology, data sources, algorithms, and sensors.