How a universal model is helping one generation of Amazon robots train the next

New approach can cut the setup time required to develop vision-based machine learning solutions from between six to twelve months to one or two.

A fundamental theme at Amazon is movement. Obtaining a product ordered by a customer and moving that product as quickly and efficiently as possible from its source to the customer’s doorstep.

This video shows robots moving packages around an Amazon fulfillment center.

That journey will often take a package through multiple warehouses and include loadings, unloadings, sortings, and routings. Human associates are crucial to this process and so, increasingly, are robotic manipulators. A rising star in this department is the Robin robotic arm and the computer vision system that makes it possible.

Robin’s visual-perception algorithms can identify and locate packages on a conveyor belt below it, for example, and even distinguish individual packages and their type within a cluttered pile.

This perceptive ability is known as segmentation, and it is central to the development of flexible and adaptive robotic processes for Amazon fulfillment centers. That’s because packages vary enormously in their dimensions and physical characteristics, moving amid an ever-changing mix of packages and against varying backdrops.

Amazon's Robin robot arm is seen lifting packages
Robin’s visual-perception algorithms can identify and locate packages on a conveyor belt below it, for example, and even distinguish individual packages and their type within a cluttered pile.

Robin is a maturing technology, but there is a constant simmering of new ideas just below the surface at Amazon, with teams of scientists and engineers across the Amazon Robotics AI group and beyond collaborating to develop AI-powered robotic solutions to improve warehouse efficiency. A new modeling approach aims to serve them all.

An abundance of packages — but not data

The initial challenge for these early-stage collaborations is often the same.

“The biggest problem that new project teams usually face is data scarcity,” says Cassie Meeker, an Amazon Robotics AI applied scientist, based in Seattle. Obtaining images relevant to a warehouse process of interest takes time and resources, but that’s just the beginning.

Cassie Meeker, an Amazon Robotics AI applied scientist, is seen standing in front of a Robin robot arm
Cassie Meeker, an Amazon Robotics AI applied scientist, says she and her team started their quest to develop universal models by utilizing publicly available datasets to give their model basic classification skills.

“For some machine learning models, you must annotate each training image manually by drawing multiple polygons around the various packages in the picture,” Meeker explains. “It can take five minutes to annotate just one image if it’s cluttered.”

The lack of task-specific training data means teams might base their perceptual models on just a few hundred images, says Meeker: “If they're lucky, they have a thousand. But even a thousand images aren’t a lot for training a model.”

If new projects do not have sufficient variety in their training data, that’s a challenge.

“The production environment is typically very different to a prototyping environment, so when they go into the production phase on the warehouse floor, they will suddenly see all these things they've never seen before and that their perception system can’t identify,” says Meeker. “They could be setting themselves up for failure.”

This difficulty in obtaining data to train segmentation models is partly due to the very specific subject matter: packages. Many computer vision models are trained on enormous, publicly available datasets full of annotated imagery, including everything from aardvarks to zabaglione. A social media company might want to segment faces, or dogs or cats, because that’s what people have lots of pictures of.

“Many publicly available datasets are perfect for that,” says Meeker. “But at Amazon, we have such a specific application and annotation requirements. It just doesn’t translate well from cat pics.”

A ’universal model’ for packages

In short, building a dataset big enough to train a demanding machine learning model requires time and resources, with no guarantee that the novel robotic process you are working toward will prove successful. This became a recurring issue for Amazon Robotics AI. So this year, work began in earnest to address the data scarcity problem. The solution: a “universal model” able to generalize to virtually any package segmentation task.

To develop the model, Meeker and her colleagues first used publicly available datasets to give their model basic classification skills — being able to distinguish boxes or packages from other things, for example. Next, they honed the model, teaching it to distinguish between many types of packaging in warehouse settings — from plastic bags to padded mailers to cardboard boxes of varying appearance — using a trove of training data compiled by the Robin program and half a dozen other Amazon teams over the last few years. This dataset comprised almost half a million annotated images.

Meet the Amazon robot improving safety

Crucially, these images of packages were snapped from a variety of angles — not only straight down from above a conveyor belt — and against a variety of backgrounds. The sheer number and variation of images make the dataset useful in virtually any warehouse location that may benefit from robotic perception and manipulation.

Meeker estimates that starting a project with the universal model can slash the setup time required to develop vision-based ML solutions from between six to twelve months to just one or two. And it has been made available to other Amazon teams in a user-friendly form, so extensive machine learning expertise is not required.

The universal model has already demonstrated its prowess, courtesy of a project run by Amazon Robotics, called Cardinal. Cardinal is a prototype robotic arm-based system that perceives and picks up packages and places them neatly into large containers ready for transport on delivery trucks. Cardinal’s perception system was developed before the universal model was available, so the team spent a lot of time creating a bespoke training dataset for it, says Cardinal’s perception lead, Jeroen van Baar, an Amazon Robotics senior applied scientist, based in North Reading, Massachusetts.

This video shows Cardinal training itself to distinguish between package types.

“We trained the system using 25,000 annotated training images that we created ourselves. But those early training images were taken using a setup with a different appearance to our prototype Cardinal workstation,” van Baar says. “To achieve the performance that we initially desired, we had to fine-tune our model using a thousand new training images taken from that prototype setting.”

After being updated with only those new images, the universal model was as accurate for performing Cardinal’s task as the workstation’s own robust model.

“Had it been available sooner, I would only have captured data specific to our setup and fine-tuned the universal model from there,” says van Baar. “Being able to shorten training time so significantly is a major benefit.”

Related content
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

And that’s the point. The universal model can quickly capitalize on any training data produced by a new-project team. This means that when new ideas are tested on the warehouse floor, or existing methods are transplanted to a new Amazon region where things are done slightly differently, the model will have enough data diversity to handle the differences.

Siddhartha Srinivasa, director of Robotics AI, thinks of the universal model as a supportive scaffold that you can use to build your house.

“We're not advocating that everybody live in the same house,” he says. “We're advocating that Amazon teams leverage the scaffolding we're providing to build whatever house they want, because it’s already very powerful, and it is getting better every day.”

Tipping point

Only recently has all this become possible.

“The Robotics AI program is young,” says Meeker. “In the beginning, there was no reason to use other teams’ data, because no one had very much.” But a tipping point has arrived. “We now have enough mature teams in production that we are seeing a real diversity and scaling of data. It is finally generalizable.”

Indeed, while the immediate focus of universal models is identifying and localizing various package types, diverse image data is now accumulating across a range of Amazon programs that cover more aspects of fulfillment centers.

Related content
Why detecting damage is so tricky at Amazon’s scale — and how researchers are training robots to help with that gargantuan task.

The universal model now includes images of unpackaged items, too, allowing it to perform segmentation across a greater diversity of warehouse processes. Initiatives such as multimodal identification, which aims to visually identify items without needing to see a barcode, and the automated damage detection program are accruing product-specific data that could be fed into the universal model, as well as images taken on the fulfillment center floor by the autonomous robots that carry crates of products.

“We’re moving towards a situation in which even data collected by small projects run by interns can be fed into the universal base model, incrementally improving the productivity of the entire robot fleet,” says Srinivasa.

We’re moving towards a situation in which even data collected by small projects run by interns can be fed into the universal base model, incrementally improving the productivity of the entire robot fleet.
Siddhartha Srinivasa

This diversity of data and its aggregation is particularly important for robotic perception within Amazon, especially given customers’ shifting needs, frequently novel Amazon packaging, and the company’s commitment to sustainability that means shipping more items in their own unique packaging.

All of this increases the visual variety of products and packages, making it harder for robots to identify from an image where one package ends and another begins.

Feeding the universal model in this way and having it available to new teams will accelerate the experimentation and deployment of future robotic processes. The use of the universal model is factored into Amazon’s immediate operational plans.

“We’re not doing this because it's cool — though it really is cool — but because it is inevitable,” says Srinivasa.

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.