A line of Amazon packages are seen traveling down a conveyor belt
Amazon associates are always on the lookout for damaged items, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

The surprisingly subtle challenge of automating damage detection

Why detecting damage is so tricky at Amazon’s scale — and how researchers are training robots to help with that gargantuan task.

With billions of customer orders flowing through Amazon’s global network of fulfillment centers (FCs) every year, it is an unfortunate but inevitable fact that some of those items will suffer accidental damage during their journey through a warehouse.

Amazon associates are always on the lookout for damaged items in the FC, but an extra pair of “eyes” may one day support them in this task, powered by machine-learning approaches being developed by Amazon’s Robotics AI team in Berlin, Germany.

Related content
The customer-obsessed science produced by teams in Berlin is integrated in several Amazon products and services, including retail, Alexa, robotics, and more.

As well as avoiding delays in shipping and improving warehouse efficiency, this particular form of artificial intelligence has the benefit of aiming to reduce waste by shipping fewer damaged goods in the first place, ensuring customers have fewer damaged items to return.

For every thousand items that make their way through an FC prior to being dispatched to the customer, fewer than one becomes damaged. That is a tiny proportion, relatively speaking, but working at the scale of Amazon this nevertheless adds up to a challenging problem.

Damage detection is important because while damage is a costly problem in itself, it becomes even more costly the longer the damage goes undetected.

Amazon associates examine items at multiple occasions through the fulfillment process, of course, but if damage occurs late in the journey and a compromised item makes it as far as the final packaging station, an associate must sideline it so that a replacement can be requested, potentially delaying delivery. As associate must then further examine the sidelined item to determine its future.

Related content
New statistical model reduces shipment damage by 24% while cutting shipping costs by 5%.

Toward the end of 2020, Sebastian Hoefer, senior applied scientist with the Amazon Robotics AI team, supported by his Amazon colleagues, successfully pitched a novel project to address this problem. The idea: combine computer vision and machine learning (ML) approaches in an attempt to automate the detection of product damage in Amazon FCs.

“You want to avoid damage altogether, but in order to do so you need to first detect it,” notes Hoefer. “We are building that capability, so that robots in the future will be able to utilize it and assist in damage detection.”

Needles in a haystack

Damage detection is a challenging scientific problem, for two main reasons.

Damage caused in Amazon FCs is rare, and that’s clearly a good thing. But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.
Ariel Gordon

The first reason is purely practical — there is precious little data on which to train ML models.

“Damage caused in Amazon FCs is rare, and that’s clearly a good thing,” says Ariel Gordon, a principal applied scientist supporting Hoefer’s team from Seattle. “But that also makes it challenging because we need to find these needles in the haystack, and identify the many forms damage can take.”

The second reason takes us into the theoretical long grass of artificial intelligence more generally.

For an adult human, everyday damage detection feels easy — we cannot help but notice damage, because our ability to do so has been honed as a fundamental life skill. Yet whether something is sufficiently damaged to render it unsellable is subjective, often ambiguous, and depends on the context, says Maksim Lapin, an Amazon senior applied scientist in Berlin. “Is it damage that is tolerable from the customer point of view, like minor damage to external packaging that will be thrown into the recycling anyway?” Lapin asks. “Or is it damage of a similar degree on the product itself, which would definitely need to be flagged?”

A side by side image shows a perforated white mailer, on the left is a standard image, on the right is the damage as "seen" by Amazon's damage detection models
Damage in Amazon fulfillment centers can be hard to spot, unlike this perforation captured by a standard camera (left) and Amazon's damage detection models (right.)

In addition, the nature of product damage makes it difficult to even define what damage is for ML models. Damage is both heterogenous — any item or product can be damaged — and can take many forms, from rips to holes to a single broken part of a larger set. Multiplied over Amazon’s massive catalogue of items, the challenge becomes enormous.

In short, do ML models stand a chance?

Off to “Damage Land”

To find out, Hoefer’s team first needed to obtain that data in a standardized format amenable to machine learning. They set about collecting it at an FC near Hamburg, Germany, called HAM2, in a section of the warehouse affectionately known as “Damage Land”. Damaged items end up there while decisions are made on whether such items can be sold at a discount, refurbished, donated or, as a last resort, disposed of.

The team set up a sensor-laden, illuminated booth in Damage Land.

“I’m very proud that HAM2 was picked up as pilot site for this initiative,” says Julia Dembeck, a senior operations manager at HAM2, who set up the Damage Taskforce to coordinate the project’s many stakeholders. “Our aim was to support the project wholeheartedly.”

After workshops with Amazon associates to explain the project and its goals, associates started placing damaged items on a tray in the booth, which snapped images using an array of RGB and depth cameras. They then manually annotated the damage in the images using a linked computer terminal.

Annotating damage detection

“The results were amazing and got even better when associates shared their best practices on the optimal way to place items in the tray,” says Dembeck. Types of damage included things like crushes, tears, holes, deconstruction (e.g., contents breaking out from its container) and spillages.

The associates collected about 30,000 product images in this way, two-thirds of which were images of damaged items.

“We also collected images of non-damaged items because otherwise we cannot train our models to distinguish between the two,” says Hoefer. “Twenty thousand pictures of damage are not a lot in ‘big data’ terms, but it is a lot given the rarity of damage.”

With data in hand, the team first applied a supervised learning ML approach, a workhorse in computer vision. They used the data as a labelled training set that would allow the algorithm to build a generalizable model of what damage can look like. When put through its paces on images of products it had never seen before, the model’s early results were promising.

When analyzing a previously unseen image of a product, the model would ascribe a damage confidence score. The higher the score, the more confident it was that the item was damaged.

The researchers had to tune the sensitivity of the model by deciding upon the confidence threshold at which the model would declare a product unfit for sending to a customer. Set that threshold too high, and modest but significant damage could be missed. Set it too low, and the model would declare some undamaged items to be damaged, a false positive.

“We did a back-of-the-envelope calculation and found that if we're sidelining more than a tiny fraction of all items going through this process, then we're going to overwhelm with false positives,” says Hoefer.

Since those preliminary results in late 2021, the team has made significant improvements.

“We’re now optimizing the model to reduce its false positive rate, and our accuracy is increasing week to week,” says Hoefer.

Different types of damage

However, the supervised learning approach alone, while promising, suffers some drawbacks.

For example, what is the model to make of the packaging of a phone protector kit that shows a smashed screen? What is it to make of a cleaning product whose box is awash with apparent spills? What about a blister pack that is entirely undamaged and should hold three razor blades but for some reason contains just two — the “broken set” problem? What about a bag of ground coffee that appears uncompromised but is sitting next to a little puddle of brown powder?

Again, for humans, making sense of such situations is second nature. We not only know what damage looks like, but also quickly learn what undamaged products should look like. We learn to spot anomalies.

Hoefer’s team decided to incorporate this ability into their damage detection system, to create a more rounded and accurate model. Again, more data was needed, because if you want to know what an item should look like, you need standardized imagery of it. This is where recent work pioneered by Amazon’s Multimodal Identification (MMID) team, part of Berlin's Robotics AI group, came in.

The MMID team has developed a computer vision tool that enables the identification of a product purely from images of it. This is useful in cases where the all-important product barcode is smudged, missing, or wrong.

In fact, it was largely the MMID team that developed the sensor-laden photo booth hardware now being put to use by Hoefer’s team. The MMID team needed it to create a gallery of standardized reference images of pristine products.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

“Damage detection could also exploit the same approach by identifying discrepancies between a product image and a gallery of reference images,” says Anton Milan, an Amazon senior applied scientist who is working across MMID and damage detection in Berlin. “In fact, our previous work on MMID allowed us to quickly take off exploring this direction in damage detection by evaluating and tweaking existing solutions.”

By incorporating the MMID team’s product image data and adapting that team’s techniques and models to sharpen their own, the damage-detection system now has a fighting chance of spotting broken sets. It is also much less likely to be fooled by damage-like images printed on the packaging of products, because it can check product imagery taken during the fulfillment process against the image of a pristine version of that product.

“Essentially, we are developing the model’s ability to say ‘something is amiss here’, and that’s a very useful signal,” says Gordon. “It's also problematic, though, because sometimes products change their design. So, the model has to be ‘alive’, continuously learning and updating in accordance with new packaging styles.”

The team is currently exploring how to combine the contributions of both discriminative and anomaly-based ML approaches to give the most accurate assessment of product damage. At the same time, they are developing hardware for trial deployment in an FC, and also collecting more data on damaged items.

The whole enterprise has come together fast, says Hoefer. “We pitched the idea just 18 months ago, and already we have an array of hardware and a team of 15 people making it a reality. As a scientist, this is super rewarding. And if it works as well as we hope, it could be sitting in across the network of Amazon fulfillment centers within a couple of years.”

Hoefer anticipates that the project will ultimately improve customer experience while also reducing waste.

Related content
Amazon Lab126 and the Center for Risk and Reliability will study how devices are accidentally damaged — and how to help ensure they survive more of those incidents.

“Once the technology matures, we expect to see a decrease in customer returns due to damage, because we will be able to identify and fix damaged products before dispatching them to customers. Not only that, by identifying damage early in the fulfillment chain, we will be able to work with vendors to build more robust products. This will again result in reducing damage overall — an important long-term goal of the project,” says Hoefer.

Also looking to the future, Lapin imagines this technology beyond warehousing.

“We are building these capabilities for the highly controlled environments of Amazon fulfillment centers, but I can see some future version of it being deployed in the wild, so to speak, in more chaotic bricks-and-mortar stores, where customers interact with products in unpredictable ways,” says Lapin.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, WA, Seattle
Job summaryAmazon Prime Video is changing the way millions of customers enjoy digital content. Prime Video delivers premium content to customers through purchase and rental of movies and TV shows, unlimited on-demand streaming through Amazon Prime subscriptions, add-on channels like Showtime and HBO, and live concerts and sporting events like NFL Thursday Night Football. In total, Prime Video offers nearly 200,000 titles and is available across a wide variety of platforms, including PCs and Macs, Android and iOS mobile devices, Fire Tablets and Fire TV, Smart TVs, game consoles, Blu-ray players, set-top-boxes, and video-enabled Alexa devices. Amazon believes so strongly in the future of video that we've launched our own Amazon Studios to produce original movies and TV shows, many of which have already earned critical acclaim and top awards, including Oscars, Emmys and Golden Globes.The Global Consumer Engagement team within Amazon Prime Video builds product and technology solutions that drive customer activation and engagement across all our supported devices and global footprint. We obsess over finding effective, programmatic and scalable ways to reach customers via a broad portfolio of both in-app and out-of-app experiences. We would love to have you join us to build models that can classify and detect content available on Prime Video. We need you to analyze the video, audio and textual signal streams and improve state-of-art solutions while being scalable to Amazon size data. We need to solve problems across many cultures and languages, working alongside an operations team generating labels across many languages to help us achieve these goals. Our team consistently strives to innovate, and holds several novel patents and inventions in the motion picture and television industry. We are highly motivated to extend the state of the art.As a member of our team, you will apply your deep knowledge of Computer Vision and Machine Learning to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on addressing fundamental computer vision models like video understanding and video summarization in addition to building appropriate large scale datasets. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with independence and are often assigned to focus on areas with significant impact on audience satisfaction. You must be equally comfortable with digging in to customer requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions.You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than pleasing our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies and deep learning approaches to your solutions. We embrace the challenges of a fast paced market and evolving technologies, paving the way to universal availability of content. You will be encouraged to see the big picture, be innovative, and positively impact millions of customers. This is a young and evolving business where creativity and drive will have a lasting impact on the way video is enjoyed worldwide.
US, MA, Boston
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 6-month Co-Op to join AR full-time (40 hours/week) from January 9, 2023 to June 23, 2023. Amazon Robotics co-op opportunities will be based out of the Greater Boston Area in our two state-of-the-art facilities in Westborough, MA and North Reading, MA. Both campuses provide a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.Key job responsibilitiesWe are seeking data scientist co-ops to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summary Looking for your next challenge? North America Sort Centers (NASC) are experiencing explosive growth and looking for a skilled, highly motivated Data Scientist to join the Sort Center Product, Science, and Analytics team. The Sort Center network is the critical Middle-Mile solution in the Amazon Transportation Services (ATS) group, linking Fulfillment Centers to the Last Mile. The experience of our customers is dependent on our ability to efficiently execute volume flow through the middle-mile network. Data Scientist will design and implement solutions to address complex business questions using advanced statistical and machine learning techniques, experimentation, and big data. In this role, you will build scalable ML models, apply advanced analysis technique and statistical concepts to draw insights from massive datasets, and create intuitive science models and data visualizations. You can contribute to each layers of a data solution – you work closely with business intelligence engineers and product managers to obtain relevant datasets and prototype predictive analytic models, you team up software development engineers to implement data pipeline to productionize your models, and review key results with business leaders and stakeholders. Your work exhibits a balance between scientific validity and business practicality. To be successful in this role, you must be able to turn ambiguous business questions into clearly defined problems, develop quantifiable metrics and robust machine learning models from imperfect data sources, and deliver results that meet high standards of data quality, security, and privacy. Inclusive Team Culture Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have 12 affinity groups (employee resource groups) with more than 87,000 employees across hundreds of chapters around the world. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which reminds team members to seek diverse perspectives, learn and be curious, and earn trust. Flexibility It isn’t about which hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We offer flexibility and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth We care about your career growth too. Whether your goals are to explore new technologies, take on bigger opportunities, or get to the next level, we'll help you get there. Our business is growing fast and our people will grow with it.
US, CA, Santa Clara
Job summaryAmazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Applied Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development and implementation of pricing & yield management (PYM) solutions using stochastic concepts to improve transportation planning solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution.As a Senior Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.