Graceful AI

How to make trained systems evolve gracefully.

As machine-learning-based decision systems improve rapidly, we are discovering that it is no longer enough for them to perform well on their own. They should also behave nicely toward their predecessors. When we replace an old trained classifier with a new one, we should expect a smooth transition and a peaceful transfer of decision powers.

Stefano 2.jpg
Stefano Soatto, vice president of applied science for AWS AI.
Credit: Todd Cheney

At Amazon Web Services (AWS), we are constantly working to improve the performance of our learning-based classification systems. Performance is typically measured by average error on test data that are representative of future use cases. We scientists get very excited when we can reduce the average error, and we hope that customers will be delighted when they replace the existing system with a new and improved one. 

However, it is possible for a new model to significantly improve average performance and yet introduce errors that the old model did not make. Those errors can be rare yet so detrimental as to nullify the benefit of the improved model. In some cases, post-processing pipelines built on top of a model can break. In other cases, users are so accustomed to the behavior of the old system that any introduced error contributes to a perceived “regression” in performance.

Regression in model update.png
When updating an old classifier (red) to a new one (dashed blue line), we correct mistakes (top right, white), but we also introduce new ones (negative flips, bottom-left, red). While on average, the errors decrease (from 57% to 42% in this toy example), regression can wreak havoc with downstream processing, nullifying the benefit of the update.
From "Positive-congruent training: Towards regression-free model updates"

You may have experienced this phenomenon when using the search feature in your photo collection. Occasionally, the provider updates the photo management software, presumably improving it. However, if an image that you were able to retrieve previously suddenly goes missing from the search, the natural reaction is surprise: How is this version any better? Give me the old one back!

When the software update occurs, the search feature is usually unavailable for a period of time; the larger your photo collection, the longer the interruption typically lasts. During this time, the system reprocesses old images to create indices and clusters them based on identities. If the model introduces new mistakes, old images may be left out of searches that used to retrieve them.

Which prompts the question, Why is it necessary to reprocess old data? Can we design and train new learning-based models in a manner that is compatible with previous ones, so that it is not necessary to reprocess the entire gallery?

These questions generally pertain to the need to train machine-learning-based systems, not in isolation, but in reference to other models. Specifically, we want the new models to be compatible with classifiers or clustering algorithms designed for the old models, and we want them to not introduce new mistakes. 

Compatible updates

Today, requirements beyond accuracy have begun to drive the machine learning process. These demands include explainability, transparency, fairness, and, now, compatibility and regression minimization. We call the ability to meet those demands “graceful AI”. 

We at AWS first faced this challenge when responding to a customer request to reduce the cost of re-indexing data, which can be significant for large photo collections. 

At the time, there was no literature on the topic. We trained a deep-learning model to minimize the average error while using the “classifier head” of an old model — the last few layers of the model, which issue the final classification decision. In other words, we forced the data representation computed by the new model to live in the same space as the old one, so the same clustering or decision rules could be used without the need to re-index old data. 

Backward-compatible model update.png
Without backward-compatible representation, updating the embedding model for a retrieval/search system means that all previously processed gallery features have to be recomputed by the new model (backfilling), as the new embedding cannot be directly compared with the old one. With a backward-compatible representation, direct comparison becomes possible, eliminating the need to backfill.
From "Towards backward-compatible representation learning"

If this approach worked, customers could start using new models immediately, with no re-indexing time or cost, and the old indexed data could be combined with the new. And it did work, as we described in the paper “Towards backward-compatible representation learning”, presented at last year's Conference on Computer Vision and Pattern Recognition (CVPR). It was the first paper in this increasingly important area of investigation in machine learning, around which we are organizing a tutorial at the upcoming International Conference on Computer Vision (ICCV).

For services that require more complex post-processing than clustering, it is paramount to minimize the number of new errors introduced by model updates. In a forthcoming oral presentation at CVPR, our team will present an approach that we call positive-congruent training, or PC training, which aims to train a new classifier without introducing errors relative to the old one. This is a first step towards regression constrained training. PC training is necessary to avoid rare but harmful mistakes that you wish to never make.

PC training is not just a matter of forcing the new model to mimic the old one — a process known as model distillation. Model distillation mimics the old model, including its errors; we want to be close to the old model only when it gets it right. 

Even when the average error is reduced to a minimum, it is still possible to reduce what we call the “negative flip rate” (NFR), which measures the percentage of new errors compared to the old model. This can be done by trading errors, keeping the average error rate constant (unless the average error rate is precisely zero, which is almost never the case in the real world). So minimizing the NFR is a separate criterion from the standard error rate, and PC training represents a new branch of research in machine learning.

It is possible for a new model to significantly improve average performance and yet introduce errors that the old model did not make. Those errors can be rare yet so detrimental as to nullify the benefit of the improved model.
Stefano Soatto

Machine-learning-based systems will continue to evolve, and eventually we will do away with the artificial separation of training (when the model parameters are learned from a fixed training dataset) and inference (when new data is presented to elicit a decision or action). As we make steps toward such “lifelong learning”, it is important for new models developed in the meantime to play nicely with existing ones. 

We have sown the first seeds of work in this area, but much remains to be done. As models are repeatedly updated, a growing set of compatibility constraints will ultimately weigh negatively on overall performance, much as backward compatibility with all previous versions makes some software so unwieldy. 

We are pleased that some of our models at AWS AI Applications are already backward-compatible, which means that customers will be able to upgrade to new models without having to change their processing pipelines or re-index old data. In 2021, any transfer of decision power should occur without drama. 

Modified models

Another version of the incompatibility problem arises when one wishes to deploy the same system on different devices with diverse resource constraints. One might, for instance, have a large and powerful model running in the cloud and smaller versions of it running on edge devices such as smartphones.

We’ve found that, to ensure compatibility, it’s not enough for the smaller models to approximate the accuracy of the large model; they also need to approximate its architecture. Again at the next CVPR, we will present a paper on “heterogeneous visual search”, which shows how to enforce this type of compatibility across platforms.

Finally, all of the above would be easier if deep neural networks were linear systems, and training consisted of minimizing a convex loss function. As we all know, this is not the case. The niche literature on linearizing deep neural networks has mostly focused on analyzing those networks’ behavior; their performance has been far below that of the full nonlinear, nonconvex originals. 

However, we have recently shown that, if linearization is done right, by modifying the loss function, the model, and the optimization, we can train linear models that perform just as well as their nonlinear counterparts. “LQF: Linear quadratic fine-tuning”, also to be presented at CVPR, describes modifying the architecture of a ResNet backbone by replacing ReLu with leaky ReLu, modifying the loss function from cross-entropy to least-square, and modifying the optimization by preconditioning using Kronecker factorization.

We are excited to continue exploring how these and other developments can lead to more transparent, more interpretable, and more “gracious” AI systems.

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE