Founding members of Black in Robotics Monroe Kennedy III and Ayanna Howard with a robot.
Ayanna Howard, chair of the School of Interactive Computing with the College of Computing at Georgia Tech, and Monroe Kennedy III, an assistant professor of mechanical engineering at Stanford University, are founding members of Black in Robotics (BiR), and members of the organization's leadership team. On Nov. 14, BiR and Amazon Robotics will announce they're collaborating to create a regional BiR chapter in Boston. It is the first of what BiR hopes will be many chapters established across the US.
Credit: Glynnis Condon, Georgia Tech, Stanford

Amazon Robotics is primary sponsor of new Black in Robotics Boston chapter

Recently formed organization advocates for more diversity, inclusion, and equity within robotics field.

At a virtual student event connected to the International Conference on Intelligent Robots and Systems (IROS), Amazon Robotics and the recently established Black in Robotics (BiR) organization will announce tomorrow they’re collaborating to create BiR’s first regional chapter, the first of what BiR hopes will be many chapters established across the US.  

Amazon Robotics’ sponsorship includes financial support for events and other activities in the Boston area, as well as providing meeting and event space in Amazon's offices in Cambridge, Massachusetts.

The Boston chapter will help create opportunities for up-and-coming roboticists, and help enrich the company’s talent pipeline, says Tye Brady, Amazon Robotics’ chief technology officer. Amazon Robotics’ headquarters is located in North Reading, Massachusetts, just north of Boston.  The Boston chapter will help Black engineering and science students at Boston-area colleges and universities such as MIT, Harvard, Boston University, Boston College, Northeastern, the University of Massachusetts, Tufts, Worcester Polytechnic Institute, Olin College, and Brown University, network and obtain mentoring and internship  opportunities from area academic and industry professionals.

“Black in Robotics is really about building community and advocating for diversity, and encouraging accountability,” said Ayanna Howard, chair of the School of Interactive Computing within the College of Computing at Georgia Tech, one of BiR’s founders, and a member of its leadership team. “We feel it makes sense to start in Boston because of the large robotics community that exists there, and because there are a large number of students there attending regional universities. It’s an ideal location to start because we can reach out to the students and reach engineers there, and establish a presence, and a blueprint for how we can build communities elsewhere.”

“If you’re an underrepresented minority student at one of the area colleges and universities, you might be only one of two or three people who look like you in your classes, and if you’re a professional working in industry, you might also be only one of two or three roboticists who look like you in your organization,” Howard added. “So this chapter is about building community, and helping students and professionals develop a network, and avoid the isolation they might otherwise feel.”

“We are really driven by the fact that we need to be the change we want to see,” added Monroe Kennedy III, an assistant professor of mechanical engineering at Stanford University who is also a founding member of BiR, and a member of its leadership team. “African Americans especially, but minorities in general, are underrepresented in STEM, and in robotics. As members of the robotics community, we recognize how valuable being a member of the community is to every aspect of our lives. So our objective is to make that opportunity available to more underrepresented minorities.”

Issues of diversity are on the agenda at AfroTech World

We asked some Black scientists to discuss the issues limiting underrepresented minorities’ involvement in the technology industry, and to share their own experiences. See what they had to say.

“The current and pervasive lack of racial, ethnic, and gender diversity in the technology ecosystem presents a significant national challenge,” says a report on women and girls of color in computing from the Kapor Center, and other contributors.

Brady says Amazon Robotics is excited to support BiR’s mission of bringing together researchers, industry professionals, and students in robotics to support one another, and help navigate academic, industry, and entrepreneurial paths. When Howard talked with Brady recently about how to address systemic inequities in robotics and the role Amazon Robotics could play in supporting the Boston BiR chapter, he didn’t hesitate.

“Ayanna is an amazing individual with deep technical chops.  Whenever she gets behind something, I pay attention,” Brady said. “I’m excited to support her and the organization’s mission.”

Brady believes it’s important to define the future of robotics with a mindset of diversity and inclusion.

Tye Brady
Tye Brady, Amazon Robotics' chief technology officer, says the Boston chapter of Black in Robotics will help create opportunities for up-and-coming roboticists, and help enrich the company's talent pipeline.

“Why do I say that?  Three reasons,” Brady said. “First, we become more creative with diverse viewpoints and perspectives, which ultimately leads to better robotics. Second, diversity is the answer to adversity. By that I mean, teams become stronger when they’re diverse; they bring more opportunities, more experience, and more viewpoints to the challenge of tackling hard problems. And third, we can source talent from a much larger pool of talent. We’re constantly seeking the best and the brightest to help us reimagine the future, and that means including others than yourself. We really need to grow the talent pipeline in computer engineering generally, and robotics more specifically, and this is a great opportunity to do that.”

The importance of mentoring

Kennedy says the new BiR Boston chapter represents the deep commitment industry and academia have to increasing the number of underrepresented minorities within STEM professions.  He’s excited about the forthcoming opportunities for students, faculty, and industry professionals to learn from each other, and collaborate on projects together.

“This is really a great opportunity for academia and industry to come together, put everything aside, and really come together as roboticists who care about each other, and want to help one another.  This first chapter can really facilitate that vision,” Kennedy said.

The mentorship component of BiR’s vision resonated with Brady.

“I just think about my own experiences when it comes to having mentors, having people help you when you have an interest in something, but no experience,” Brady said. “I’m thankful to those people who extended a helping hand to me. I’m thankful to those companies who said, ‘I can help you; I can give you a chance.’ I’ve lived that, and it’s important to pass that experience on to others. This initiative provides a great opportunity to do that.  Not just for myself, but for our entire Amazon Robotics team.”

Kennedy says he, too, has benefited from many mentors in his career journey, and he’s pulled together different attributes from each to help guide his career and lifestyle choices.

“One thing that was lacking is there wasn’t necessarily one place I could go where these examples came together in a nice, cohesive way,” Kennedy says. “This is something Black in Robotics has to offer. We want to bring these individuals, these examples, together in a cohesive way, so students don’t have to look all over the place to get exposed to these positive examples, to find their heroes.”

Mentorship is a critical component of Howard’s role as a professor at Georgia Tech.

“My group at Tech is very diverse; it’s representative of the world and I hope all of them pursue a career in robotics,” Howard said. “I mentor them, not just academically, but socially as well. I introduce them to people, and I work to push them out front and promote them. And we just need more of that. That’s what resonates for me with this Boston chapter; it’s that ability to network with others that doesn’t happen naturally without this kind of organization. We’re creating the water cooler where people can come together, and networking will be a natural byproduct of that.”

Education and community outreach

Education and community outreach is another component of BiR’s mission.  This, too, speaks to Brady, who’s concerned not only by the lack of underrepresented minorities within the tech industry overall, and the robotics field more specifically, but with declining college enrollments in STEM-related courses.

“We have to get to the K through 12 kids sooner, and engage them in computer science, and science-related topics sooner,” Brady said. “That’s one of the things we hope to enable with this chapter. We want to create robotics ambassadors who can get engaged with K through 12 kids, and share their experiences and their passion for robotics. “Our entire community needs to get involved because we need more college graduates with computer science degrees, engineering degrees, and graduates who are STEM minded.  So that’s another aspect of this initiative that we’re really excited about.”

"Outreach at every level of a student’s education is required"

Four economists from diverse backgrounds shared how economics can address its diversity problem and talked about how their lives have shaped their work as economists.

Howard agrees, though she emphasizes that the burden shouldn’t solely rest with Black roboticists to help drive change within the field.

“There has been a lot of progress; the needle has moved,” she says. “It just hasn’t moved at the rate is has in other fields like medicine or law. The way we’ve established this organization from the outset is that allies are a pillar. Our mission isn’t just to connect Black roboticists with other Black roboticists. We don’t believe that will move the needle. People like myself, who have been in this field for a while, shouldn’t bear the burden of fixing robotics.  That’s why our approach has been to bring in allies from the beginning; we’ve created an ally steering committee because this isn’t a Black or Brown problem, this is a robotics problem.”

Those of us who have more senior roles in our field have helped knock down some of the walls, but we need to make sure that even though we’ve knocked down some walls, the road for future roboticists is more comfortable to travel on.
Ayanna Howard

“Some of this is also about calling ourselves out,” Howard continues, “to say ‘Look, this is as much our fault as it is society’s fault, and therefore we need to play a role in fixing it. Those of us who have more senior roles in our field have helped knock down some of the walls, but we need to make sure that even though we’ve knocked down some walls, the road for future roboticists is more comfortable to travel on.”

In addition to Howard and Kennedy, other members of BiR’s leadership team include Carlotta Berry, a professor of electrical and computer engineering at the Rose-Hulman Institute of Technology; Edward  Tunstel, group leader, and associate director of robotics at Raytheon Technologies’ Research Center; Quincy Kissiedu-Brown, cofounder of blackcomputerHER; Maynard Holliday, senior engineer, Rand Corporation; Yves Nazon II, a graduate research assistant at the University of Michigan; and Kwesi Rutledge, a PhD candidate in electrical engineering at the University of Michigan.

Howard says the Boston chapter’s first event is scheduled for January. Individuals interested in becoming a BiR member can visit the organization’s website.

Research areas

Related content

US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience. We are open to hiring candidates to work out of one of the following locations: Denver, CO, USA | Seattle, WA, USA
US, WA, Seattle
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Data Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with ambiguity. - Manage and drive the technical and analytical aspects of Advertiser segmentation; continually advance approach and methods. - Write code (Python, R, Scala, etc.) to analyze data and build statistical models to solve specific business problems - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support decision making. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Provide requirements to develop analytic capabilities, platforms, and pipelines. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose solution for the business problem you defined - Conduct written and verbal presentation to share insights and recommendations to audiences of varying levels of technical sophistication. - Write code (python or another object-oriented language) for data analyzing and modeling algorithms. A day in the life The Senior Data Scientist will have the opportunity to use one of the world's largest eCommerce and advertising data sets to influence the evolution of our products. This role requires an individual with excellent business, communication, and technical skills, enabling collaboration with various functions, including product managers, software engineers, economists and data scientists, as well as senior leadership. This role will create and enhance performance monitoring reports to find insights that product and business team should focus on. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. This role will influence the direction of the business by leveraging our data to deliver insights that drive decisions and actions. The role will involve translating broad business problems into specific analytics projects, conducting deep quantitative analyses, and communicating results effectively. The role will help the organization identify, evaluate, and evangelize new techniques and tools to continue to improve our ability to deliver value to Amazon’s customers. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire an Applied Scientist to work on the embedded software for our control system. The position is on-site at our lab, located on the Caltech campus in Pasadena, CA. The ideal candidate will be able to translate high-level requirements (e.g. latency, bandwidth, architecture) into software/firmware implementations (e.g. low-level device drivers, kernel modules, Python APIs) compatible with our FPGA-based control systems. This requires someone who (1) has a strong desire to work within a team of scientists and engineers, and (2) demonstrates ownership in initiating and driving projects to completion. Key job responsibilities - Develop embedded software in C, C++ or Rust for high-performance real-time tasks. - Develop Linux and/or real-time operating system (RTOS) features required to operate control system. - Develop FPGA gateware that drives domain-specific functions of our control hardware. - Develop user-space API that exposes low-level features, preferably in Python. - Develop, test, and optimize control system features on bench-top and in real-world conditions. - Own the stability of control system software and firmware. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem-solving and excellent communication skills. Working effectively within a team environment is essential. You will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The lifetime of your projects will likely begin with a lot of discussion and negotiation with our scientists and engineers to translate their software and hardware feature requests into design proposals that demonstrate sensible trade-offs between complexity and delivery. Once a design proposal has been accepted, you will implement it in a logical and maintainable manner. You will also be encouraged to take ownership over the stability and quality of the software and hardware stack by identifying, proposing, and implementing features that will accelerate our realization of quantum computing technologies. You will be joining the Control & Calibration Software team within the AWS Center of Quantum Computing. Our team is comprised of scientists and engineers who are building scalable software that enables quantum computing technologies. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Seattle
Alexa is the Amazon cloud service that powers Echo, the groundbreaking Amazon device designed around your voice. We believe voice is the most natural user interface for interacting with technology across many domains; we are inventing the future. Alexa Audio is responsible for fulfilling customers requests for all types of audio content (Music, Radio, Podcasts, Books, custom sounds) across all Alexa enabled devices. This covers a broad set of experiences including search, browse, recommendations, playback, and devices grouping and controls. We are seeking a talented, self-directed Applied Scientists who would come up with state of the art semantic search and recommendation techniques that work with both voice and visual interfaces. This is a unique opportunity where you will be working on latest technologies including LLMs, and also see it impact customer's lives in meaningful ways. Responsibilities - Apply advance state-of-the-art artificial intelligence techniques and develop algorithms in areas of personalization, voice based dialogue systems and natural language information retrieval. - Design scientifically sound online experiments and offline simulations to study and improve products. - Work closely with talented engineers to create scalable models and put them to production. - Perform statistical analyses on large data sets, identify problems, and propose solutions. - Work with partner science teams to identify collaboration opportunities. Work hard. Have fun. Make history. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, London
Amazon Advertising is looking for an Applied Scientist to join its initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies.The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
GB, Cambridge
The Amazon Artificial General Intelligence (AGI) team is looking for a passionate, highly skilled and inventive Senior Applied Scientist with strong machine learning background to lead the development and implementation of state-of-the-art ML systems for building large-scale, high-quality conversational assistant systems. Key job responsibilities - Use deep learning, ML and NLP techniques to create scalable solutions for creation and development of language model centric solutions for building personalized assistant systems based on a rich set of structured and unstructured contextual signals - Innovate new methods for contextual knowledge extraction and information representation, using language models in combination with other learning techniques, that allows effective grounding in context providers when considering memory, cpu, latency and quality - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in personal knowledge aggregation, processing and verification - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think Big about the arc of development of conversational assistant system personalization over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team A day in the life As a Senior Applied Scientist, you will play a critical role in driving the development of personalization techniques enabling conversational systems, in particular those based on large language models, to be tailored to customer needs. You will handle Amazon-scale use cases with significant impact on our customers' experiences. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR | London, GBR
DE, Berlin
The Amazon Artificial General Intelligence (AGI) team is looking for a passionate, highly skilled and inventive Senior Applied Scientist with strong machine learning background to lead the development and implementation of state-of-the-art ML systems for building large-scale, high-quality conversational assistant systems. Key job responsibilities - Use deep learning, ML and NLP techniques to create scalable solutions for creation and development of language model centric solutions for building personalized assistant systems based on a rich set of structured and unstructured contextual signals - Innovate new methods for contextual knowledge extraction and information representation, using language models in combination with other learning techniques, that allows effective grounding in context providers when considering memory, cpu, latency and quality - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in personal knowledge aggregation, processing and verification - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think Big about the arc of development of conversational assistant system personalization over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team A day in the life As a Senior Applied Scientist, you will play a critical role in driving the development of personalization techniques enabling conversational systems, in particular those based on large language models, to be tailored to customer needs. You will handle Amazon-scale use cases with significant impact on our customers' experiences. We are open to hiring candidates to work out of one of the following locations: Berlin, DEU
US, WA, Seattle
Amazon Web Services (AWS) is building a world-class marketing organization, and we are looking for an experienced Applied Scientist to join the central data and science organization for AWS Marketing. You will lead AWS Measurement, targeting, recommendation, forecasting related AI/ML products and initiatives, and own mechanisms to raise the science and measurement standard. You will work with economists, scientists and engineers within the team, and partner with product and business teams across AWS Marketing to build the next generation marketing measurement, valuation and machine learning capabilities directly leading to improvements in our key performance metrics. A successful candidate has an entrepreneurial spirit and wants to make a big impact on AWS growth. You will develop strong working relationships and thrive in a collaborative team environment. You will work closely with business leaders, scientists, and engineers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. The ideal candidate will have experience with machine learning models and causal inference. Additionally, we are seeking candidates with strong rigor in applied sciences and engineering, creativity, curiosity, and great judgment. You will work on high-impact, high-visibility products, with your work improving the experience of AWS leads and customers. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities * Lead the design, development, deployment, and innovation of advanced science models in the strategic area of marketing measurement and optimization. * Partner with scientists, economists, engineers, and product leaders to break down complex business problems into science approaches. * Understand and mine the large amount of data, prototype and implement new learning algorithms and prediction techniques to improve long-term causal estimation approaches. * Design, build, and deploy effective and innovative ML solutions to improve components of our ML and causal inference pipelines. * Publish and present your work at internal and external scientific venues in the fields of ML and causal inference. * Influence long-term science initiatives and mentor other scientists across AWS. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | New York City, NY, USA | Seattle, WA, USA
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Artificial General Intelligence (AGI) organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services . We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA | Sunnyvale, CA, USA