AfroTech logo and headshots of  Dela Agbemabiese, Justin Barry, Nashlie Sephus and Colby Wise.
With AfroTech World occurring this week, we asked some of the company's Black scientists what they consider some of the systemic issues limiting underrepresented minorities from being more involved in the technology industry. We heard from Dela Agbemabiese (lower left), a data scientist, Justin Barry (upper left), applied scientist, Nashlie Sephus (upper right), applied science manager, and Colby Wise (lower right), senior deep learning scientist.
Credit: Glynis Condon

Issues of racial, ethnic and gender diversity are on the agenda at AfroTech World

Amazon scientists provide insights on issues related to lack of involvement of underrepresented minorities in the technology industry.

As CNBC reported earlier this year, six years after initially disclosing diversity reports, major technology companies have made little progress in hiring more minorities, especially Black employees with science and technology skills.

This presents a series of ongoing challenges. According the US Bureau of Labor Statistics (BLS), nearly one-quarter of the country’s total economic output is produced by high-tech industries, and in 2017 BLS projected there would be more than 1 million job openings in computer and information technology over the next 10 years. Moreover, computing occupation salaries are more than twice the median wage for all other occupations, according to BLS.

“When we look at tech and its impact on our economy, and the simultaneous underrepresentation of the Black community, it is a critically important racial and economic justice issue," says Allison Scott, CEO of the Kapor Center. “When the tech workforce and leadership reflects the diverse experiences and backgrounds of our nation, I believe tech can begin to play an integral role in addressing long-standing disparities that exist in this country.”

As of December 31, 2019, Amazon reported that 26.5% of its global workforce identifies as Black/African American, 26.5% Asian, 18.5% Hispanic/Latinx, 1.3% as Native American, and 3.6% as two or more races.  The 26.5% of employees who identify as Black/African American work in both non-technical and technical roles.

This week at AfroTech World, issues related to the lack of adequate racial, ethnic, and gender diversity within the technology industry are on the agenda as leaders in technology and business come together to exchange ideas for creating greater opportunity for Blacks in technology.  Amazon is a Diamond Sponsor of this year’s event, and has a virtual recruiting booth.  

On Nov. 13, the company is hosting a virtual event, “Our Voices, Our Power”, presented by Amazon’s Black Employee Network (BEN) affinity group. Attendees will hear employees share their Amazon journey stories, learn about career opportunities, and enjoy entertainment.

In advance of AfroTech, Amazon Science asked some of the company’s Black scientists what they consider some of the systemic issues limiting underrepresented minorities’ involvement in the technology industry, about some of the issues they have had to overcome in pursuing their science careers, who or what inspired them to pursue their science careers, and what lessons we might take from their individual experiences. 

Dela Agbemabiese is a data scientist within Amazon’s advertising organization. He earned his master’s degree in business administration from Drexel University.

Dela Agbemabiese
Dela Agbemabiese

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Lack of financial resources to stimulate curiosity in tech, lack of mentors or heroes to look up to due to low representation, and societal prejudice hindering opportunities.

Lack of financial resources to stimulate curiosity in tech. I have been fortunate and blessed my entire life.  All gratitude goes to my parents. I was born in Ghana, West Africa. My mom was a nurse, and my dad an economist. Due to the nature of my dad’s work, I got the opportunity to travel a lot as a kid, got enrolled into a course at eight years old to get a Linux command line certificate, and always had access to tech resources. My parents sacrificed to ensure I attended the best schools, and there is not a single thing I ever asked for that I did not get. This may not be the case for all children, whose parents are possibly working hard doing multiple jobs, and in some cases are single parents. If the financial resources I had were similar to that of many minority children, it would be unlikely for me to be where I am today.

"Students don’t see themselves represented in the [economics] profession"

Four economists from diverse backgrounds explain why diversity is essential—and what needs to happen to achieve it.

Lack of mentors or heroes to look up to due to low representation. While my dad was heavy on econometrics and I learned a thing or two from him, it was my cousin Martey to whom I looked up. He was brilliant academically, and I always wanted to be like him. He tutored me in math and physics, thus giving me an edge over my classmates. Martey was not my only mentor, in fact, I had many, including Yao Obeng, who helped me nurture my creativity and problem-solving skills. Many minority children may not have mentors or heroes within tech to encourage and inspire interest in tech-related careers. If I did not have these mentors to motivate me, it would be unlikely for me to be where I am today.

Societal prejudice hindering opportunities. Growing up in Ghana, prejudice did not exist from a racial standpoint. Once I moved to the United States for my undergraduate degree, this became a reality. My minority friends and I have had to work twice as hard as our peers to prove we are as good as our credentials. We strived to invalidate stereotypes about minorities through the quality of our work and our work ethic. With everything I do, in the back of my mind I am thinking about how my actions or inactions affect the perception towards minorities: am I enabling some of these unfounded prejudices? Or am I, through my work, educating my peers and superiors? For me, this societal prejudice only began when I came to the United States for my undergraduate degree, but imagine the minority children out there who have had to live with this their entire lives. It sure can get demoralizing.

What are some of the obstacles you had to overcome in pursuing your science career?

Societal prejudice hindering opportunities. I have been lucky to have managers and peers that are inclusive and open-minded, that judge me based on the quality of my work. Rachel McKitrick was my first manager in Amazon. I joined Amazon as a business analyst, despite my previous role as a senior data scientist. I just wanted to join Amazon! Rachel knew my business analyst role was not ideal, and gave me projects that were science oriented, which ultimately enabled my transition to scientist. My second manager, Monica Wu, always made herself available to chat and made me feel like my voice and opinion mattered. My current team managed by Dauwe Vercamer and Andrew Petschek welcomed me with open arms, gave me opportunities to shine and lead within the team. They provide direct feedback that has made me a much better scientist today.

I have had the privilege of learning from a lot of people. Societal prejudice may be harder to solve for, but I believe a good place to start will be to find means for minority youth to gain access to some of the brilliant minds within the technology industry, be it through some virtual teaching programs, or through some mentoring programs. The prejudice may exist, the financial resources may be sparse or non-existent, but with heroes and mentors to look up to, a child’s imagination can be sparked for what could be.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

My dad due to his econometrics background, and my childhood mentors who encouraged me to put math and science ahead of basketball and soccer. Since then, I have had lots of mentors along the way, especially here at Amazon. Individuals such as Leo Razoumov, Pranjal Mallick, Amy Ruschak, John Lafayette, and Oded Netzer, who have helped shape me into a better scientist.

My advice to Black students interested in a STEM career, or other Black scientists is to find mentors, and get them involved in your work. Meet with them once a week for even 10 minutes, and let them influence your work.

Justin Barry is an applied scientist with Amazon’s Prime Video organization. He earned his master’s degree in computer science from the University of Central Florida.

Justin Barry
Justin Barry

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

This is a massive topic with a myriad of associated socioeconomic issues. One issue that jumps to the forefront for me is the schools where leading companies within the tech industry recruit from. Traditionally, these companies have limited their recruitment to top universities where Blacks and other underrepresented minorities comprise a small percentage of the student population. This is beginning to change, but I believe technology companies need to more aggressively expand their recruitment efforts, especially among historically Black colleges and universities (HBCUs).

What are some of the obstacles you had to overcome in pursuing your science career?

One issue is imposter syndrome — the idea that you're not good enough and you’re only in your position because you’ve been given special treatment. Although imposter syndrome is something everyone experiences, I think it’s particularly acute for Blacks given the clear underrepresentation within the technology industry. Imposter syndrome can touch all aspects of your job if you’re unaware, or if you don’t have the tools to deal with it. Not everyone has the tools to deal with it, and I suspect not everyone has correctly identified the problem.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

Video games sparked my interest in computer science, and more specifically artificial intelligence. My undergraduate degree is in computer science and math, and machine learning and AI provide the opportunity to apply my computer science and math skills to real-world applications.

Nashlie Sephus is an applied science manager within Amazon Web Services Ai. She earned her PhD in electrical and computer engineering from Georgia Tech.

Nashlie Sephus
Nashlie Sephus

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Imposter syndrome is one issue I find common within underrepresented minority groups. It’s a feeling of being convinced that you don’t belong in the industry, or within advanced roles in the industry, regardless of your accolades and accomplishments. It is as if they are not real or didn’t happen. This is often due to not seeing many others who look like you in similar or higher positions. ‘You can’t be what you can’t see’ is a common thought. Also, there are few mentors or support systems for these groups, and as a black/female/engineer/scientist, you sometimes feel like the minority of the minority, which further isolates you.  

What are some of the obstacles you had to overcome in pursuing your science career?

At times, I have had to fight for myself and members of my teams for equal pay and advancement in my career. I also have needed to develop mechanisms to be heard when it was difficult to convey messages to those around me. I’m usually quiet and reserved, but over the years I’ve learned how to gain respect from peers by being more outspoken even, or especially, when I disagreed. This is one reason why I appreciate Amazon’s leadership principle: Have Backbone; Disagree and Commit. 

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

I grew up in a house full of women where we often did our own chores, like fixing and repairing things around the house. I was also always going to summer math and science camps in elementary and middle school, especially a summer engineering camp for girls after my eighth grade science teacher recommended I attend. This was when I was first introduced to the various areas of engineering, and fell in love with computer science. Being able to control the hardware with software was fascinating to me. I knew then that’s what I wanted to do. This early exposure to science was key to me figuring out one of my passions, in addition to music and sports.

Colby Wise is a senior deep learning scientist and manager within the AWS Machine Learning Solutions Lab. He earned his master’s degree in computer science from the Columbia University Fu Foundation School of Engineering and Applied Sciences.

Colby Wise
Colby Wise

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Educational opportunity. Science, technology, engineering, and math (STEM) careers in the technology industry are highly competitive. Over the years, we’ve seen advanced tools and technologies like cloud technology, machine learning, and deep learning, that were once reserved only for large companies or prestigious universities being utilized by students as early as junior high school. While this has created and accelerated educational opportunities for millions of students globally, the reality is that not all have been able to benefit. In the United States, public school funding varies significantly by geography, and where you grow up is a major factor in access to educational resources. Schools with advanced STEM courses and other after-school programs are valuable inroads for STEM students to accelerate their learning opportunities and explore careers in science. What’s more, these opportunities compound positively from lower educational levels to higher educational levels. While not the only factor, these programs are important when understanding the pipeline of underrepresented minorities in highly competitive industries like technology. For example, the US Federal Reserve conducted a study highlighting how educational attainment of parents plays an important role in children’s educational pursuits. Studies like this and others indicate that lower parental educational attainment may present a unique challenge for students. One potential consequence of underrepresentation of minorities in advanced degrees is that employment opportunities often arise from one’s social network, employee referrals, for example. This can be summarized as both an employment funnel problem and a network problem. While not always the case, a more diverse workforce can build connections to underrepresented talent pools. 

Financial equality. In a study from 2020, the US Federal Reserve found large and persistent gaps in net wealth and earnings by race and ethnicity. While education is a significant factor in wage gaps, the St. Louis Federal Reserve found net wealth by race was not as positively correlated with educational attainment for minorities. Educational attainment is extremely important. Many highly technical roles require advanced degrees. Financial equality and opportunity as characterized by job salary prospects, current income and net wealth, and access to educational funding sources like loans are all potential factors impacting lower minority employment. In 2016, the Brookings Institution found the median household net wealth for Black and Hispanic families to be 1/8th  that of white households. When you consider the rising cost of college and advanced degrees, this income and net wealth gap may also play a factor in why employment among underrepresented minorities is lower in highly competitive industries like technology. Specifically, minorities whose households cannot readily pay for advanced degrees choose between the implications of high debt burdens and lower comparative earnings, and often must forsake advanced degrees to enter or stay in the workforce.

Leadership representation. Representation of minorities in leadership positions is relatively low. It is unclear how much educational opportunity and financial equality contribute to this, compared to other issues such as equitable pathways to senior leadership positions. In many companies in which I have worked, you notice a similar triangular pattern of minority leadership where representation at junior levels is more in-line with industry trends, while there is a dearth of representation as you reach more senior positions. No doubt there is work to be done to drive greater employment of underrepresented minorities at all levels. But simply increasing the representation at entry levels does not address other attrition and talent-retention hurdles. Overall, companies need to take a more systematic, data-driven approach to move the needle and find solutions to underrepresentation of minorities in the tech industry. For instance, companies should not be afraid to tackle the complex issues at multiple hierarchies, such as creating innovative solutions to drive educational opportunity while objectively measuring current pathways to employment within the tech industry. Furthermore, companies should ensure financial equality by aligning corporate incentives with fair pay distributions, minority leadership representation, and talent development and retention.  

What are some of the obstacles you had to overcome in pursuing your science career?

Educational opportunity. While everyone’s path is different, unfortunately my story is rather common given its similarity to those of many underrepresented minorities. I faced and overcame obstacles in educational and financial opportunity plus roadblocks to leadership roles. I attribute my luck mainly to the many individuals who provided a helping hand, plus a little bit of hard work sprinkled in. I grew up in a single-parent household in an impoverished, high-crime inner-city area. Despite this, my family valued education highly, and one of my parents had an advanced degree which was extremely rare for the area. Given that, I always ranked in the top 1% in my coursework while very young. That said, district educational attainment rates were low, and advanced coursework or programs for gifted students were nonexistent. However, prior to high school an unfortunate family event led to me moving from one of the poorest areas in the country to one of the best school districts nationally. After discovering how far behind I was in math and science, my family and I worked extremely hard over several years to get me back in line with my expected academic grade level. Now fast-forwarding to college: I, like many other minorities, did not have the means to pay for college, nor easy access to loans. After being selected to a number of great schools, my decision was ultimately driven by the amount of money I received in scholarships and grants. During college I followed the same recipe for success: tons of luck, humility to ask for help, and a bit of hard work to land an internship as a sophomore at a prestigious Wall Street investment bank. There I was surrounded by some of the smartest minds in STEM, with many having achieved advanced degrees from top universities around the world. The vast majority of these individuals did not look like me. Desperately wanting to be accepted and succeed among my peers in industry is what drove me to pursue a career in science, and many years later brought me to AWS.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

Family and friends. Ultimately, doing what you love and constantly learning while being curious is the greatest inspiration one needs to pursue a career in science. As discussed above, studies have shown a correlation between parental educational attainment and children’s attainment. Thinking forward a bit, I combined my passion for what I love in science — AI/ML — with a selfish goal of wanting to be a living model for a career in science for my children. My greatest inspiration, however, is my wife. She discovered her passion for science at a very young age with plentiful opportunities to explore that passion, ultimately helping her reach the pinnacles of academia, where she received undergraduate and graduate degrees from two of the top universities in the world. Her passion for science, hard work, and humility continue to inspire me on a daily basis.

Related content

US, WA, Seattle
Revolutionize the Future of AI at the Frontier of Applied Science Are you a brilliant mind seeking to push the boundaries of what's possible with artificial intelligence? Join our elite team of researchers and engineers at the forefront of applied science, where we're harnessing the latest advancements in natural language processing, deep learning, and generative AI to reshape industries and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge technologies such as large language models, transformers, and neural networks. You'll dive deep into complex challenges, fine-tuning state-of-the-art models, developing novel algorithms for named entity recognition, and exploring the vast potential of generative AI. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in statistics, recommender systems, and question answering to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for LLM & GenAI Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA; Pittsburgh, PA. Key job responsibilities We are particularly interested in candidates with expertise in: LLMs, NLP/NLU, Gen AI, Transformers, Fine-Tuning, Recommendation Systems, Deep Learning, NER, Statistics, Neural Networks, Question Answering. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and GenAI. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on recommendation systems, question answering, deep learning and generative AI. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with cross-functional teams to tackle complex challenges in natural language processing, computer vision, and generative AI. - Fine-tune state-of-the-art models and develop novel algorithms to push the boundaries of what's possible. - Explore the vast potential of generative AI and its applications across industries. - Attend cutting-edge research seminars and engage in thought-provoking discussions with industry luminaries. - Leverage state-of-the-art computing infrastructure and access to the latest research papers to fuel your innovation. - Present your groundbreaking work and insights to the team, fostering a culture of knowledge-sharing and continuous learning.
US, WA, Seattle
Unlock the Future with Amazon Science! Calling all visionary minds passionate about the transformative power of machine learning! Amazon is seeking boundary-pushing graduate student scientists who can turn revolutionary theory into awe-inspiring reality. Join our team of visionary scientists and embark on a journey to revolutionize the field by harnessing the power of cutting-edge techniques in bayesian optimization, time series, multi-armed bandits and more. At Amazon, we don't just talk about innovation – we live and breathe it. You'll conducting research into the theory and application of deep reinforcement learning. You will work on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. You will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Programming/Scripting Languages, Statistics, Reinforcement Learning, Causal Inference, Large Language Models, Time Series, Graph Modeling, Supervised/Unsupervised Learning, Deep Learning, Predictive Modeling In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Reinforcement Learning and Optimization within Machine Learning. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on developing novel RL algorithms and applying them to complex, real-world challenges. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, WA, Seattle
Shape the Future of Human-Machine Interaction Are you a master of natural language processing, eager to push the boundaries of conversational AI? Amazon is seeking exceptional graduate students to join our cutting-edge research team, where they will have the opportunity to explore and push the boundaries of natural language processing (NLP), natural language understanding (NLU), and speech recognition technologies. Imagine waking up each morning, fueled by the excitement of tackling complex research problems that have the potential to reshape the world. You'll dive into production-scale data, exploring innovative approaches to natural language understanding, large language models, reinforcement learning with human feedback, conversational AI, and multimodal learning. Your days will be filled with brainstorming sessions, coding sprints, and lively discussions with brilliant minds from diverse backgrounds. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated.. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Natural Language Processing & Speech Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: NLP/NLU, LLMs, Reinforcement Learning, Human Feedback/HITL, Deep Learning, Speech Recognition, Conversational AI, Natural Language Modeling, Multimodal Learning. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Natural Language Processing and Speech Technologies. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on natural language processing, speech recognition, text-to-speech (TTS), text recognition, question answering, NLP models (e.g., LSTM, transformer-based models), signal processing, information extraction, conversational modeling, audio processing, speaker detection, large language models, multilingual modeling, and more. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in natural language processing, speech recognition, text-to-speech, question answering, and conversational modeling. - Tackle groundbreaking research problems on production-scale data, leveraging techniques such as LSTM, transformer-based models, signal processing, information extraction, audio processing, speaker detection, large language models, and multilingual modeling. - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in NLP/NLU, LLMs, reinforcement learning, human feedback/HITL, deep learning, speech recognition, conversational AI, natural language modeling, and multimodal learning. - Thrive in a fast-paced, ever-changing environment, embracing ambiguity and demonstrating strong attention to detail.
US, WA, Seattle
Do you enjoy solving challenging problems and driving innovations in research? Do you want to create scalable optimization models and apply machine learning techniques to guide real-world decisions? We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of millions of customers. As a Research Science intern focused on Operations Research and Optimization intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes and work with massive datasets. As you navigate through complex algorithms and data structures, you'll find yourself at the forefront of innovation, shaping the future of Amazon's fulfillment, logistics, and supply chain operations. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions. You'll then immerse yourself in a world of data, leveraging your expertise in optimization, causal inference, time series analysis, and machine learning to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Operations Research Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Causal Inference, Time Series, Algorithms and Data Structures, Statistics, Operations Research, Machine Learning, Programming/Scripting Languages, LLMs In this role, you will gain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life Develop and apply optimization, causal inference, and time series modeling techniques to drive operational efficiencies and improve decision-making across Amazon's fulfillment, logistics, and supply chain operations Design and implement scalable algorithms and data structures to support complex optimization systems Leverage statistical methods and machine learning to uncover insights and patterns in large-scale operations data Prototype and validate new approaches through rigorous experimentation and analysis Collaborate closely with cross-functional teams of researchers, engineers, and business stakeholders to translate research outputs into tangible business impact
US, CA, San Francisco
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Must be eligible and available for a full-time (40h/ week) 12 week internship between May 2026 and September 2026. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Unleash Your Potential at the Forefront of AI Innovation At Amazon, we're on a mission to revolutionize the way the world leverages machine learning. Amazon is seeking graduate student scientists who can turn revolutionary theory into awe-inspiring reality. As an Applied Science Intern focused on Information and Knowledge Management in Machine Learning, you will play a critical role in developing the systems and frameworks that power Amazon's machine learning capabilities. You'll be at the epicenter of this transformation, shaping the systems and frameworks that power our cutting-edge AI capabilities. Imagine a role where you develop intuitive tools and workflows that empower machine learning teams to discover, reuse, and build upon existing models and datasets, accelerating innovation across the company. You'll leverage natural language processing and information retrieval techniques to unlock insights from vast repositories of unstructured data, fueling the next generation of AI applications. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Knowledge Graphs and Extraction, Neural Networks/GNNs, Data Structures and Algorithms, Time Series, Machine Learning, Natural Language Processing, Deep Learning, Large Language Models, Graph Modeling, Knowledge Graphs and Extraction, Programming/Scripting Languages In this role, you'll collaborate with brilliant minds to develop innovative frameworks and tools that streamline the lifecycle of machine learning assets, from data to deployed models in areas at the intersection of Knowledge Management within Machine Learning. You will conduct groundbreaking research into emerging best practices and innovations in the field of ML operations, knowledge engineering, and information management, proposing novel approaches that could further enhance Amazon's machine learning capabilities. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). A day in the life About the team Amazon’s AGI team is focused on building foundational AI to solve real-world problems at scale, delivering value to all existing businesses in Amazon, and enabling entirely new services and products for people and enterprises around the world.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Seller Growth Science organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Senior Applied Scientist to lead us to identify data-driven insight and opportunities to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of scientists and engineers, you will solve complex problems to identify actionable opportunities, and collaborate with engineering, research, and business teams for future innovation. You need to be a sophisticated user and builder of statistical models and put them in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As an Applied Scientist, you will: - Identify opportunities to improve seller partner growth and development processes and translate those opportunities into science problems via principled statistical solutions (e.g. ML, causal inference). - Collaborate with senior scientists and contribute to maintaining high standards of technical rigor and excellence in MLOps. - Design and execute science projects to help seller partners have a delightful selling experience while creating long term value for our shoppers. - Work with engineering partners to meet latency and other system constraints. - Explore new technical and scientific directions under guidance, and drive projects to completion and delivery. - Communicate science innovations to the broader internal scientific community.