AfroTech logo and headshots of  Dela Agbemabiese, Justin Barry, Nashlie Sephus and Colby Wise.
With AfroTech World occurring this week, we asked some of the company's Black scientists what they consider some of the systemic issues limiting underrepresented minorities from being more involved in the technology industry. We heard from Dela Agbemabiese (lower left), a data scientist, Justin Barry (upper left), applied scientist, Nashlie Sephus (upper right), applied science manager, and Colby Wise (lower right), senior deep learning scientist.
Credit: Glynis Condon

Issues of racial, ethnic and gender diversity are on the agenda at AfroTech World

Amazon scientists provide insights on issues related to lack of involvement of underrepresented minorities in the technology industry.

As CNBC reported earlier this year, six years after initially disclosing diversity reports, major technology companies have made little progress in hiring more minorities, especially Black employees with science and technology skills.

This presents a series of ongoing challenges. According the US Bureau of Labor Statistics (BLS), nearly one-quarter of the country’s total economic output is produced by high-tech industries, and in 2017 BLS projected there would be more than 1 million job openings in computer and information technology over the next 10 years. Moreover, computing occupation salaries are more than twice the median wage for all other occupations, according to BLS.

“When we look at tech and its impact on our economy, and the simultaneous underrepresentation of the Black community, it is a critically important racial and economic justice issue," says Allison Scott, CEO of the Kapor Center. “When the tech workforce and leadership reflects the diverse experiences and backgrounds of our nation, I believe tech can begin to play an integral role in addressing long-standing disparities that exist in this country.”

As of December 31, 2019, Amazon reported that 26.5% of its global workforce identifies as Black/African American, 26.5% Asian, 18.5% Hispanic/Latinx, 1.3% as Native American, and 3.6% as two or more races.  The 26.5% of employees who identify as Black/African American work in both non-technical and technical roles.

This week at AfroTech World, issues related to the lack of adequate racial, ethnic, and gender diversity within the technology industry are on the agenda as leaders in technology and business come together to exchange ideas for creating greater opportunity for Blacks in technology.  Amazon is a Diamond Sponsor of this year’s event, and has a virtual recruiting booth.  

On Nov. 13, the company is hosting a virtual event, “Our Voices, Our Power”, presented by Amazon’s Black Employee Network (BEN) affinity group. Attendees will hear employees share their Amazon journey stories, learn about career opportunities, and enjoy entertainment.

In advance of AfroTech, Amazon Science asked some of the company’s Black scientists what they consider some of the systemic issues limiting underrepresented minorities’ involvement in the technology industry, about some of the issues they have had to overcome in pursuing their science careers, who or what inspired them to pursue their science careers, and what lessons we might take from their individual experiences. 

Dela Agbemabiese is a data scientist within Amazon’s advertising organization. He earned his master’s degree in business administration from Drexel University.

Dela Agbemabiese
Dela Agbemabiese

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Lack of financial resources to stimulate curiosity in tech, lack of mentors or heroes to look up to due to low representation, and societal prejudice hindering opportunities.

Lack of financial resources to stimulate curiosity in tech. I have been fortunate and blessed my entire life.  All gratitude goes to my parents. I was born in Ghana, West Africa. My mom was a nurse, and my dad an economist. Due to the nature of my dad’s work, I got the opportunity to travel a lot as a kid, got enrolled into a course at eight years old to get a Linux command line certificate, and always had access to tech resources. My parents sacrificed to ensure I attended the best schools, and there is not a single thing I ever asked for that I did not get. This may not be the case for all children, whose parents are possibly working hard doing multiple jobs, and in some cases are single parents. If the financial resources I had were similar to that of many minority children, it would be unlikely for me to be where I am today.

"Students don’t see themselves represented in the [economics] profession"

Four economists from diverse backgrounds explain why diversity is essential—and what needs to happen to achieve it.

Lack of mentors or heroes to look up to due to low representation. While my dad was heavy on econometrics and I learned a thing or two from him, it was my cousin Martey to whom I looked up. He was brilliant academically, and I always wanted to be like him. He tutored me in math and physics, thus giving me an edge over my classmates. Martey was not my only mentor, in fact, I had many, including Yao Obeng, who helped me nurture my creativity and problem-solving skills. Many minority children may not have mentors or heroes within tech to encourage and inspire interest in tech-related careers. If I did not have these mentors to motivate me, it would be unlikely for me to be where I am today.

Societal prejudice hindering opportunities. Growing up in Ghana, prejudice did not exist from a racial standpoint. Once I moved to the United States for my undergraduate degree, this became a reality. My minority friends and I have had to work twice as hard as our peers to prove we are as good as our credentials. We strived to invalidate stereotypes about minorities through the quality of our work and our work ethic. With everything I do, in the back of my mind I am thinking about how my actions or inactions affect the perception towards minorities: am I enabling some of these unfounded prejudices? Or am I, through my work, educating my peers and superiors? For me, this societal prejudice only began when I came to the United States for my undergraduate degree, but imagine the minority children out there who have had to live with this their entire lives. It sure can get demoralizing.

What are some of the obstacles you had to overcome in pursuing your science career?

Societal prejudice hindering opportunities. I have been lucky to have managers and peers that are inclusive and open-minded, that judge me based on the quality of my work. Rachel McKitrick was my first manager in Amazon. I joined Amazon as a business analyst, despite my previous role as a senior data scientist. I just wanted to join Amazon! Rachel knew my business analyst role was not ideal, and gave me projects that were science oriented, which ultimately enabled my transition to scientist. My second manager, Monica Wu, always made herself available to chat and made me feel like my voice and opinion mattered. My current team managed by Dauwe Vercamer and Andrew Petschek welcomed me with open arms, gave me opportunities to shine and lead within the team. They provide direct feedback that has made me a much better scientist today.

I have had the privilege of learning from a lot of people. Societal prejudice may be harder to solve for, but I believe a good place to start will be to find means for minority youth to gain access to some of the brilliant minds within the technology industry, be it through some virtual teaching programs, or through some mentoring programs. The prejudice may exist, the financial resources may be sparse or non-existent, but with heroes and mentors to look up to, a child’s imagination can be sparked for what could be.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

My dad due to his econometrics background, and my childhood mentors who encouraged me to put math and science ahead of basketball and soccer. Since then, I have had lots of mentors along the way, especially here at Amazon. Individuals such as Leo Razoumov, Pranjal Mallick, Amy Ruschak, John Lafayette, and Oded Netzer, who have helped shape me into a better scientist.

My advice to Black students interested in a STEM career, or other Black scientists is to find mentors, and get them involved in your work. Meet with them once a week for even 10 minutes, and let them influence your work.

Justin Barry is an applied scientist with Amazon’s Prime Video organization. He earned his master’s degree in computer science from the University of Central Florida.

Justin Barry
Justin Barry

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

This is a massive topic with a myriad of associated socioeconomic issues. One issue that jumps to the forefront for me is the schools where leading companies within the tech industry recruit from. Traditionally, these companies have limited their recruitment to top universities where Blacks and other underrepresented minorities comprise a small percentage of the student population. This is beginning to change, but I believe technology companies need to more aggressively expand their recruitment efforts, especially among historically Black colleges and universities (HBCUs).

What are some of the obstacles you had to overcome in pursuing your science career?

One issue is imposter syndrome — the idea that you're not good enough and you’re only in your position because you’ve been given special treatment. Although imposter syndrome is something everyone experiences, I think it’s particularly acute for Blacks given the clear underrepresentation within the technology industry. Imposter syndrome can touch all aspects of your job if you’re unaware, or if you don’t have the tools to deal with it. Not everyone has the tools to deal with it, and I suspect not everyone has correctly identified the problem.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

Video games sparked my interest in computer science, and more specifically artificial intelligence. My undergraduate degree is in computer science and math, and machine learning and AI provide the opportunity to apply my computer science and math skills to real-world applications.

Nashlie Sephus is an applied science manager within Amazon Web Services Ai. She earned her PhD in electrical and computer engineering from Georgia Tech.

Nashlie Sephus
Nashlie Sephus

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Imposter syndrome is one issue I find common within underrepresented minority groups. It’s a feeling of being convinced that you don’t belong in the industry, or within advanced roles in the industry, regardless of your accolades and accomplishments. It is as if they are not real or didn’t happen. This is often due to not seeing many others who look like you in similar or higher positions. ‘You can’t be what you can’t see’ is a common thought. Also, there are few mentors or support systems for these groups, and as a black/female/engineer/scientist, you sometimes feel like the minority of the minority, which further isolates you.  

What are some of the obstacles you had to overcome in pursuing your science career?

At times, I have had to fight for myself and members of my teams for equal pay and advancement in my career. I also have needed to develop mechanisms to be heard when it was difficult to convey messages to those around me. I’m usually quiet and reserved, but over the years I’ve learned how to gain respect from peers by being more outspoken even, or especially, when I disagreed. This is one reason why I appreciate Amazon’s leadership principle: Have Backbone; Disagree and Commit. 

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

I grew up in a house full of women where we often did our own chores, like fixing and repairing things around the house. I was also always going to summer math and science camps in elementary and middle school, especially a summer engineering camp for girls after my eighth grade science teacher recommended I attend. This was when I was first introduced to the various areas of engineering, and fell in love with computer science. Being able to control the hardware with software was fascinating to me. I knew then that’s what I wanted to do. This early exposure to science was key to me figuring out one of my passions, in addition to music and sports.

Colby Wise is a senior deep learning scientist and manager within the AWS Machine Learning Solutions Lab. He earned his master’s degree in computer science from the Columbia University Fu Foundation School of Engineering and Applied Sciences.

Colby Wise
Colby Wise

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Educational opportunity. Science, technology, engineering, and math (STEM) careers in the technology industry are highly competitive. Over the years, we’ve seen advanced tools and technologies like cloud technology, machine learning, and deep learning, that were once reserved only for large companies or prestigious universities being utilized by students as early as junior high school. While this has created and accelerated educational opportunities for millions of students globally, the reality is that not all have been able to benefit. In the United States, public school funding varies significantly by geography, and where you grow up is a major factor in access to educational resources. Schools with advanced STEM courses and other after-school programs are valuable inroads for STEM students to accelerate their learning opportunities and explore careers in science. What’s more, these opportunities compound positively from lower educational levels to higher educational levels. While not the only factor, these programs are important when understanding the pipeline of underrepresented minorities in highly competitive industries like technology. For example, the US Federal Reserve conducted a study highlighting how educational attainment of parents plays an important role in children’s educational pursuits. Studies like this and others indicate that lower parental educational attainment may present a unique challenge for students. One potential consequence of underrepresentation of minorities in advanced degrees is that employment opportunities often arise from one’s social network, employee referrals, for example. This can be summarized as both an employment funnel problem and a network problem. While not always the case, a more diverse workforce can build connections to underrepresented talent pools. 

Financial equality. In a study from 2020, the US Federal Reserve found large and persistent gaps in net wealth and earnings by race and ethnicity. While education is a significant factor in wage gaps, the St. Louis Federal Reserve found net wealth by race was not as positively correlated with educational attainment for minorities. Educational attainment is extremely important. Many highly technical roles require advanced degrees. Financial equality and opportunity as characterized by job salary prospects, current income and net wealth, and access to educational funding sources like loans are all potential factors impacting lower minority employment. In 2016, the Brookings Institution found the median household net wealth for Black and Hispanic families to be 1/8th  that of white households. When you consider the rising cost of college and advanced degrees, this income and net wealth gap may also play a factor in why employment among underrepresented minorities is lower in highly competitive industries like technology. Specifically, minorities whose households cannot readily pay for advanced degrees choose between the implications of high debt burdens and lower comparative earnings, and often must forsake advanced degrees to enter or stay in the workforce.

Leadership representation. Representation of minorities in leadership positions is relatively low. It is unclear how much educational opportunity and financial equality contribute to this, compared to other issues such as equitable pathways to senior leadership positions. In many companies in which I have worked, you notice a similar triangular pattern of minority leadership where representation at junior levels is more in-line with industry trends, while there is a dearth of representation as you reach more senior positions. No doubt there is work to be done to drive greater employment of underrepresented minorities at all levels. But simply increasing the representation at entry levels does not address other attrition and talent-retention hurdles. Overall, companies need to take a more systematic, data-driven approach to move the needle and find solutions to underrepresentation of minorities in the tech industry. For instance, companies should not be afraid to tackle the complex issues at multiple hierarchies, such as creating innovative solutions to drive educational opportunity while objectively measuring current pathways to employment within the tech industry. Furthermore, companies should ensure financial equality by aligning corporate incentives with fair pay distributions, minority leadership representation, and talent development and retention.  

What are some of the obstacles you had to overcome in pursuing your science career?

Educational opportunity. While everyone’s path is different, unfortunately my story is rather common given its similarity to those of many underrepresented minorities. I faced and overcame obstacles in educational and financial opportunity plus roadblocks to leadership roles. I attribute my luck mainly to the many individuals who provided a helping hand, plus a little bit of hard work sprinkled in. I grew up in a single-parent household in an impoverished, high-crime inner-city area. Despite this, my family valued education highly, and one of my parents had an advanced degree which was extremely rare for the area. Given that, I always ranked in the top 1% in my coursework while very young. That said, district educational attainment rates were low, and advanced coursework or programs for gifted students were nonexistent. However, prior to high school an unfortunate family event led to me moving from one of the poorest areas in the country to one of the best school districts nationally. After discovering how far behind I was in math and science, my family and I worked extremely hard over several years to get me back in line with my expected academic grade level. Now fast-forwarding to college: I, like many other minorities, did not have the means to pay for college, nor easy access to loans. After being selected to a number of great schools, my decision was ultimately driven by the amount of money I received in scholarships and grants. During college I followed the same recipe for success: tons of luck, humility to ask for help, and a bit of hard work to land an internship as a sophomore at a prestigious Wall Street investment bank. There I was surrounded by some of the smartest minds in STEM, with many having achieved advanced degrees from top universities around the world. The vast majority of these individuals did not look like me. Desperately wanting to be accepted and succeed among my peers in industry is what drove me to pursue a career in science, and many years later brought me to AWS.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

Family and friends. Ultimately, doing what you love and constantly learning while being curious is the greatest inspiration one needs to pursue a career in science. As discussed above, studies have shown a correlation between parental educational attainment and children’s attainment. Thinking forward a bit, I combined my passion for what I love in science — AI/ML — with a selfish goal of wanting to be a living model for a career in science for my children. My greatest inspiration, however, is my wife. She discovered her passion for science at a very young age with plentiful opportunities to explore that passion, ultimately helping her reach the pinnacles of academia, where she received undergraduate and graduate degrees from two of the top universities in the world. Her passion for science, hard work, and humility continue to inspire me on a daily basis.

Related content

US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.