AfroTech logo and headshots of  Dela Agbemabiese, Justin Barry, Nashlie Sephus and Colby Wise.
With AfroTech World occurring this week, we asked some of the company's Black scientists what they consider some of the systemic issues limiting underrepresented minorities from being more involved in the technology industry. We heard from Dela Agbemabiese (lower left), a data scientist, Justin Barry (upper left), applied scientist, Nashlie Sephus (upper right), applied science manager, and Colby Wise (lower right), senior deep learning scientist.
Credit: Glynis Condon

Issues of racial, ethnic and gender diversity are on the agenda at AfroTech World

Amazon scientists provide insights on issues related to lack of involvement of underrepresented minorities in the technology industry.

As CNBC reported earlier this year, six years after initially disclosing diversity reports, major technology companies have made little progress in hiring more minorities, especially Black employees with science and technology skills.

This presents a series of ongoing challenges. According the US Bureau of Labor Statistics (BLS), nearly one-quarter of the country’s total economic output is produced by high-tech industries, and in 2017 BLS projected there would be more than 1 million job openings in computer and information technology over the next 10 years. Moreover, computing occupation salaries are more than twice the median wage for all other occupations, according to BLS.

“When we look at tech and its impact on our economy, and the simultaneous underrepresentation of the Black community, it is a critically important racial and economic justice issue," says Allison Scott, CEO of the Kapor Center. “When the tech workforce and leadership reflects the diverse experiences and backgrounds of our nation, I believe tech can begin to play an integral role in addressing long-standing disparities that exist in this country.”

As of December 31, 2019, Amazon reported that 26.5% of its global workforce identifies as Black/African American, 26.5% Asian, 18.5% Hispanic/Latinx, 1.3% as Native American, and 3.6% as two or more races.  The 26.5% of employees who identify as Black/African American work in both non-technical and technical roles.

This week at AfroTech World, issues related to the lack of adequate racial, ethnic, and gender diversity within the technology industry are on the agenda as leaders in technology and business come together to exchange ideas for creating greater opportunity for Blacks in technology.  Amazon is a Diamond Sponsor of this year’s event, and has a virtual recruiting booth.  

On Nov. 13, the company is hosting a virtual event, “Our Voices, Our Power”, presented by Amazon’s Black Employee Network (BEN) affinity group. Attendees will hear employees share their Amazon journey stories, learn about career opportunities, and enjoy entertainment.

In advance of AfroTech, Amazon Science asked some of the company’s Black scientists what they consider some of the systemic issues limiting underrepresented minorities’ involvement in the technology industry, about some of the issues they have had to overcome in pursuing their science careers, who or what inspired them to pursue their science careers, and what lessons we might take from their individual experiences. 

Dela Agbemabiese is a data scientist within Amazon’s advertising organization. He earned his master’s degree in business administration from Drexel University.

Dela Agbemabiese
Dela Agbemabiese

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Lack of financial resources to stimulate curiosity in tech, lack of mentors or heroes to look up to due to low representation, and societal prejudice hindering opportunities.

Lack of financial resources to stimulate curiosity in tech. I have been fortunate and blessed my entire life.  All gratitude goes to my parents. I was born in Ghana, West Africa. My mom was a nurse, and my dad an economist. Due to the nature of my dad’s work, I got the opportunity to travel a lot as a kid, got enrolled into a course at eight years old to get a Linux command line certificate, and always had access to tech resources. My parents sacrificed to ensure I attended the best schools, and there is not a single thing I ever asked for that I did not get. This may not be the case for all children, whose parents are possibly working hard doing multiple jobs, and in some cases are single parents. If the financial resources I had were similar to that of many minority children, it would be unlikely for me to be where I am today.

"Students don’t see themselves represented in the [economics] profession"

Four economists from diverse backgrounds explain why diversity is essential—and what needs to happen to achieve it.

Lack of mentors or heroes to look up to due to low representation. While my dad was heavy on econometrics and I learned a thing or two from him, it was my cousin Martey to whom I looked up. He was brilliant academically, and I always wanted to be like him. He tutored me in math and physics, thus giving me an edge over my classmates. Martey was not my only mentor, in fact, I had many, including Yao Obeng, who helped me nurture my creativity and problem-solving skills. Many minority children may not have mentors or heroes within tech to encourage and inspire interest in tech-related careers. If I did not have these mentors to motivate me, it would be unlikely for me to be where I am today.

Societal prejudice hindering opportunities. Growing up in Ghana, prejudice did not exist from a racial standpoint. Once I moved to the United States for my undergraduate degree, this became a reality. My minority friends and I have had to work twice as hard as our peers to prove we are as good as our credentials. We strived to invalidate stereotypes about minorities through the quality of our work and our work ethic. With everything I do, in the back of my mind I am thinking about how my actions or inactions affect the perception towards minorities: am I enabling some of these unfounded prejudices? Or am I, through my work, educating my peers and superiors? For me, this societal prejudice only began when I came to the United States for my undergraduate degree, but imagine the minority children out there who have had to live with this their entire lives. It sure can get demoralizing.

What are some of the obstacles you had to overcome in pursuing your science career?

Societal prejudice hindering opportunities. I have been lucky to have managers and peers that are inclusive and open-minded, that judge me based on the quality of my work. Rachel McKitrick was my first manager in Amazon. I joined Amazon as a business analyst, despite my previous role as a senior data scientist. I just wanted to join Amazon! Rachel knew my business analyst role was not ideal, and gave me projects that were science oriented, which ultimately enabled my transition to scientist. My second manager, Monica Wu, always made herself available to chat and made me feel like my voice and opinion mattered. My current team managed by Dauwe Vercamer and Andrew Petschek welcomed me with open arms, gave me opportunities to shine and lead within the team. They provide direct feedback that has made me a much better scientist today.

I have had the privilege of learning from a lot of people. Societal prejudice may be harder to solve for, but I believe a good place to start will be to find means for minority youth to gain access to some of the brilliant minds within the technology industry, be it through some virtual teaching programs, or through some mentoring programs. The prejudice may exist, the financial resources may be sparse or non-existent, but with heroes and mentors to look up to, a child’s imagination can be sparked for what could be.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

My dad due to his econometrics background, and my childhood mentors who encouraged me to put math and science ahead of basketball and soccer. Since then, I have had lots of mentors along the way, especially here at Amazon. Individuals such as Leo Razoumov, Pranjal Mallick, Amy Ruschak, John Lafayette, and Oded Netzer, who have helped shape me into a better scientist.

My advice to Black students interested in a STEM career, or other Black scientists is to find mentors, and get them involved in your work. Meet with them once a week for even 10 minutes, and let them influence your work.

Justin Barry is an applied scientist with Amazon’s Prime Video organization. He earned his master’s degree in computer science from the University of Central Florida.

Justin Barry
Justin Barry

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

This is a massive topic with a myriad of associated socioeconomic issues. One issue that jumps to the forefront for me is the schools where leading companies within the tech industry recruit from. Traditionally, these companies have limited their recruitment to top universities where Blacks and other underrepresented minorities comprise a small percentage of the student population. This is beginning to change, but I believe technology companies need to more aggressively expand their recruitment efforts, especially among historically Black colleges and universities (HBCUs).

What are some of the obstacles you had to overcome in pursuing your science career?

One issue is imposter syndrome — the idea that you're not good enough and you’re only in your position because you’ve been given special treatment. Although imposter syndrome is something everyone experiences, I think it’s particularly acute for Blacks given the clear underrepresentation within the technology industry. Imposter syndrome can touch all aspects of your job if you’re unaware, or if you don’t have the tools to deal with it. Not everyone has the tools to deal with it, and I suspect not everyone has correctly identified the problem.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

Video games sparked my interest in computer science, and more specifically artificial intelligence. My undergraduate degree is in computer science and math, and machine learning and AI provide the opportunity to apply my computer science and math skills to real-world applications.

Nashlie Sephus is an applied science manager within Amazon Web Services Ai. She earned her PhD in electrical and computer engineering from Georgia Tech.

Nashlie Sephus
Nashlie Sephus

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Imposter syndrome is one issue I find common within underrepresented minority groups. It’s a feeling of being convinced that you don’t belong in the industry, or within advanced roles in the industry, regardless of your accolades and accomplishments. It is as if they are not real or didn’t happen. This is often due to not seeing many others who look like you in similar or higher positions. ‘You can’t be what you can’t see’ is a common thought. Also, there are few mentors or support systems for these groups, and as a black/female/engineer/scientist, you sometimes feel like the minority of the minority, which further isolates you.  

What are some of the obstacles you had to overcome in pursuing your science career?

At times, I have had to fight for myself and members of my teams for equal pay and advancement in my career. I also have needed to develop mechanisms to be heard when it was difficult to convey messages to those around me. I’m usually quiet and reserved, but over the years I’ve learned how to gain respect from peers by being more outspoken even, or especially, when I disagreed. This is one reason why I appreciate Amazon’s leadership principle: Have Backbone; Disagree and Commit. 

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

I grew up in a house full of women where we often did our own chores, like fixing and repairing things around the house. I was also always going to summer math and science camps in elementary and middle school, especially a summer engineering camp for girls after my eighth grade science teacher recommended I attend. This was when I was first introduced to the various areas of engineering, and fell in love with computer science. Being able to control the hardware with software was fascinating to me. I knew then that’s what I wanted to do. This early exposure to science was key to me figuring out one of my passions, in addition to music and sports.

Colby Wise is a senior deep learning scientist and manager within the AWS Machine Learning Solutions Lab. He earned his master’s degree in computer science from the Columbia University Fu Foundation School of Engineering and Applied Sciences.

Colby Wise
Colby Wise

What do you consider some of the systemic issues limiting underrepresented minorities from greater employment opportunities in the technology industry?

Educational opportunity. Science, technology, engineering, and math (STEM) careers in the technology industry are highly competitive. Over the years, we’ve seen advanced tools and technologies like cloud technology, machine learning, and deep learning, that were once reserved only for large companies or prestigious universities being utilized by students as early as junior high school. While this has created and accelerated educational opportunities for millions of students globally, the reality is that not all have been able to benefit. In the United States, public school funding varies significantly by geography, and where you grow up is a major factor in access to educational resources. Schools with advanced STEM courses and other after-school programs are valuable inroads for STEM students to accelerate their learning opportunities and explore careers in science. What’s more, these opportunities compound positively from lower educational levels to higher educational levels. While not the only factor, these programs are important when understanding the pipeline of underrepresented minorities in highly competitive industries like technology. For example, the US Federal Reserve conducted a study highlighting how educational attainment of parents plays an important role in children’s educational pursuits. Studies like this and others indicate that lower parental educational attainment may present a unique challenge for students. One potential consequence of underrepresentation of minorities in advanced degrees is that employment opportunities often arise from one’s social network, employee referrals, for example. This can be summarized as both an employment funnel problem and a network problem. While not always the case, a more diverse workforce can build connections to underrepresented talent pools. 

Financial equality. In a study from 2020, the US Federal Reserve found large and persistent gaps in net wealth and earnings by race and ethnicity. While education is a significant factor in wage gaps, the St. Louis Federal Reserve found net wealth by race was not as positively correlated with educational attainment for minorities. Educational attainment is extremely important. Many highly technical roles require advanced degrees. Financial equality and opportunity as characterized by job salary prospects, current income and net wealth, and access to educational funding sources like loans are all potential factors impacting lower minority employment. In 2016, the Brookings Institution found the median household net wealth for Black and Hispanic families to be 1/8th  that of white households. When you consider the rising cost of college and advanced degrees, this income and net wealth gap may also play a factor in why employment among underrepresented minorities is lower in highly competitive industries like technology. Specifically, minorities whose households cannot readily pay for advanced degrees choose between the implications of high debt burdens and lower comparative earnings, and often must forsake advanced degrees to enter or stay in the workforce.

Leadership representation. Representation of minorities in leadership positions is relatively low. It is unclear how much educational opportunity and financial equality contribute to this, compared to other issues such as equitable pathways to senior leadership positions. In many companies in which I have worked, you notice a similar triangular pattern of minority leadership where representation at junior levels is more in-line with industry trends, while there is a dearth of representation as you reach more senior positions. No doubt there is work to be done to drive greater employment of underrepresented minorities at all levels. But simply increasing the representation at entry levels does not address other attrition and talent-retention hurdles. Overall, companies need to take a more systematic, data-driven approach to move the needle and find solutions to underrepresentation of minorities in the tech industry. For instance, companies should not be afraid to tackle the complex issues at multiple hierarchies, such as creating innovative solutions to drive educational opportunity while objectively measuring current pathways to employment within the tech industry. Furthermore, companies should ensure financial equality by aligning corporate incentives with fair pay distributions, minority leadership representation, and talent development and retention.  

What are some of the obstacles you had to overcome in pursuing your science career?

Educational opportunity. While everyone’s path is different, unfortunately my story is rather common given its similarity to those of many underrepresented minorities. I faced and overcame obstacles in educational and financial opportunity plus roadblocks to leadership roles. I attribute my luck mainly to the many individuals who provided a helping hand, plus a little bit of hard work sprinkled in. I grew up in a single-parent household in an impoverished, high-crime inner-city area. Despite this, my family valued education highly, and one of my parents had an advanced degree which was extremely rare for the area. Given that, I always ranked in the top 1% in my coursework while very young. That said, district educational attainment rates were low, and advanced coursework or programs for gifted students were nonexistent. However, prior to high school an unfortunate family event led to me moving from one of the poorest areas in the country to one of the best school districts nationally. After discovering how far behind I was in math and science, my family and I worked extremely hard over several years to get me back in line with my expected academic grade level. Now fast-forwarding to college: I, like many other minorities, did not have the means to pay for college, nor easy access to loans. After being selected to a number of great schools, my decision was ultimately driven by the amount of money I received in scholarships and grants. During college I followed the same recipe for success: tons of luck, humility to ask for help, and a bit of hard work to land an internship as a sophomore at a prestigious Wall Street investment bank. There I was surrounded by some of the smartest minds in STEM, with many having achieved advanced degrees from top universities around the world. The vast majority of these individuals did not look like me. Desperately wanting to be accepted and succeed among my peers in industry is what drove me to pursue a career in science, and many years later brought me to AWS.

Who or what inspired you to pursue your science career, and what lessons can we take from your experience?

Family and friends. Ultimately, doing what you love and constantly learning while being curious is the greatest inspiration one needs to pursue a career in science. As discussed above, studies have shown a correlation between parental educational attainment and children’s attainment. Thinking forward a bit, I combined my passion for what I love in science — AI/ML — with a selfish goal of wanting to be a living model for a career in science for my children. My greatest inspiration, however, is my wife. She discovered her passion for science at a very young age with plentiful opportunities to explore that passion, ultimately helping her reach the pinnacles of academia, where she received undergraduate and graduate degrees from two of the top universities in the world. Her passion for science, hard work, and humility continue to inspire me on a daily basis.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
IN, TS, Hyderabad
Job summaryAre you excited about driving business growth for millions of sellers by applying Machine Learning? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? We are looking for experienced data scientists to build sophisticated decision making systems that help Amazon Marketplace Sellers to grow their businesses.Amazon Marketplace enables sellers to reach hundreds of millions of customers and provides sellers the tools and services needed to make e-commerce simple, efficient and successful. Our team builds the core intelligence, insights, and algorithms that power a range of products used by millions of sellers. We are tackling large-scale, challenging problems such as helping sellers to prioritise business tasks by bringing together petabytes of data from sources across Amazon.You will be proficient with creating value out of data by formulating questions, analysing vast amounts of data, and communicating insights effectively to audience of varied backgrounds. In addition, you'll contribute to online experiments, build machine learning pipelines and personalised data products.To know more about Amazon science, Please visit https://www.amazon.scienceKey job responsibilities· Collaborate with domain experts, formulate questions, gather, process and analyse petabytes of data to unearth reliable insights· Design & execute experiments and analyze experimental results· Communicate insights effectively to audience of a wide range of backgrounds· Formulate relevant prediction problems and solve them by developing machine learning models· Partner with data engineering teams to improve quality of data assets, metrics and insights· Leverage industry best practices to establish repeatable science practices, principles & processes
US, WA, Seattle
Job summaryAmazon Sub-Same-Day Supply Chain team is looking for an experienced and motivated Senior Data Scientist to generate data-driven insights influencing the long term SSD supply chain strategy, build the necessary predictive models, optimization algorithms and customer behavioral segments allowing us to discover and build the roadmap for SSD to enable operational efficiency and scale.Key job responsibilitiesWork with product managers, engineers, other scientists, and leadership to identify and prioritize complex problems.Translate business problems into specific analytical questions and form hypotheses that can be answered with available data using scientific methods or identify additional data needed in the master datasets to fill any gapsDesign, develop, and evaluate highly innovative statistics and ML modelsGuide and establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationProactively seek to identify business opportunities and insights and provide solutions to shape key business processes and policies based on a broad and deep knowledge of Amazon data, industry best-practices, and work done by other teams.A day in the lifeIn this role, you will be a technical expert with significant scope and impact. You will work with Product Managers, Business Engineers, and other Scientists, to deeply understand SSDs current optimization strategy while benchmarking against industry best practices and standards to gain insights that will drive our roadmap. A successful Data Scientist will have extreme bias for action needed in a startup environment, with outstanding leadership skills, proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. It will be a person who enjoys diving deep into data, doing analysis, discovering root causes, and designing long-term scientific solutions. We are seeking someone who can thrive in a fast-paced, high-energy and fun work environment where we deliver value incrementally and frequently. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career.About the teamAmazon's Sub-Same Day (SSD) delivery program is designed to get customers their items as fast as possible – currently in as quickly as five hours. With ultra-fast delivery becoming increasingly important, we are looking for an experienced Senior Data Scientist to help us benchmark against industry standards to uncover insights to improve and optimize the long term supply chain strategy for Amazons Sub-Same-Day business.
US, VA, Arlington
Job summaryAmazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities.Sponsored Products helps merchants, retail vendors, and brand owners succeed via native advertising that grows incremental sales of their products sold through Amazon. The Sponsored Products Ad Marketplace organization optimizes the systems and ad placements to match advertiser demand with publisher supply using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. Our goals are to help buyers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and to build a major, sustainable business that helps Amazon continuously innovate on behalf of all customers.We are seeking a Sr. Applied Science Manager who has a solid background in applied Machine Learning and AI, deep passion for building data-driven products, ability to communicate data insights and scientific vision, and has a proven track record of leading both applied scientists and software engineers to execute complex projects and deliver business impacts.In this team, Machine Learning and Deep Learning technologies including Semantic Retrieval, Natural Language Processing (NLP), Information Extraction, Image Understanding, Learning to Rank are used to match shoppers' search queries to ads with per impression prediction models that run in real-time with tight latency budgets. Models are trained using self-supervised techniques, transfer learning, and supervised training using labeled datasets. Knowledge distillation and model compression techniques are used to optimize model performance for production serving.The Senior Manager role will lead science and engineering efforts in these areas for Amazon Search pages WW. The person in this role is responsible for: maintaining the consistent and long term reliability for the models and the delivery services that power them, managing diverse teams across multiple domains, and collaborating cross-functional with other senior decision makers. Our critical LPs for this role are Think Big, Are Right A lot, and Earns Trust. What is key is that the leader will need a dynamic mindset to build systems that are flexible and will scale.In this role, you will:· Lead a group of both applied scientists and software engineers to deliver machine-learning and AI solutions to production.· Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner.· Develop science and engineering roadmap, run Sprint/quarter and annual planning, and foster cross-team collaboration to execute complex projects.· Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management.· Hire and develop top talents, provide technical and career development guidance to both scientists and engineers in the organization.Locations: Seattle, WA; New York, NY; Arlington, VA
US, NY, New York
Job summaryJob summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryAmazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers. We are seeking a skilled Applied Scientist to help us build the future of experimentation systems at Amazon.About you:You have an entrepreneurial spirit and want to make a big impact on Amazon and its customers. You are excited about cutting-edge research on unsupervised learning, graph algorithms, and causal inference in the intersection between Machine Learning, Statistics, and Econometrics. You enjoy building massive scale and high performance systems but also have a bias for delivering simple solutions to complex problems. You're looking for a career where you'll be able to build, to deliver, and to impress. You challenge yourself and others to come up with better solutions. You develop strong working relationships and thrive in a collaborative team environment.About us together:We're going to help Amazon make better long term decisions by designing and delivering A/B-testing systems for long-term experiments, and by using these systems to figure out how near term behavior impacts long term growth and profitability. Our work will inform some of the biggest decisions at Amazon. Along the way, we're going to face seemingly insurmountable challenges. We're going to argue about how to solve them, and we'll work together to find a solution that is better than each of the proposals we came in with. We'll make tough decisions, but we'll all understand why. We'll be the dream team.We have decades of combined experience on the team in many areas science and engineering so it's a great environment in which to learn and grow. A/B testing is one of the hottest areas of research and development in the world today and this is a chance to learn how it works in the company known for pioneering its use.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.