Howard University's Founders Library is seen in the distance.
Howard University's Founders Library is seen in the distance. Howard is hosting AEASP “in support of increasing the pipeline of underrepresented minority economists.”
Oscar Merrida IV

Amazon to sponsor Howard University summer program aimed at increasing pipeline of minority economists

Howard University is the first Black college to host the American Economic Association Summer Training and Scholarship Program.

Howard University recently announced that it will host the American Economic Association Summer Training and Scholarship Program (AEASP) “in support of increasing the pipeline of underrepresented minority economists.” The program will be hosted at Howard for the next five years, and Amazon is sponsoring next summer’s program. Amazon first began discussions with Howard University about sponsoring AEASP about two years ago. The program, which aims to prepare “talented undergraduates for doctoral programs in economics and related disciplines,” will celebrate its 50th anniversary in 2024 at Howard.

"The lack of diversity in economics becomes self-reinforcing"

Four economists from diverse backgrounds shared how economics can address its diversity problem and talked about how their lives have shaped their work as economists.

That Howard, an historically Black college and university (HBCU) which produces more Black economics undergrads than any other institution, is hosting AEASP for the first time serves as a reminder of the progress the economics profession still must make.

The Caucus of Black Economists (later called the National Economics Association) first began exploring the issues of underrepresentation of minorities within the economics field in 1969. More than 50 years later, the economics profession is still grappling with structural issues. In fact, last January’s AEA conference in San Diego featured a panel titled, “How Can Economics Solve Its Race Problem.”

Rhonda Vonshay Sharpe and Omari H. Swinton standing in front of Howard University.
Rhonda Vonshay Sharpe, left, and Omari H. Swinton, right, are seen posing on the campus of Howard University. They discussed why economics still struggles with diversity.
Oscar Merrida IV

Omari H. Swinton, the chair of Howard University’s Department of Economics, who is both an alumni and the current director of the AEA summer program, as well as the past president of the National Economics Association, has observed that, “The vast majority of institutions in the US have never had a Black economist on staff, and the vast majority of schools have never graduated a Black PhD economist.”

Rhonda Vonshay Sharpe, the founder and president of the Women's Institute for Science, Equity, and Race (WISER), which is also a partner in next summer’s AEASP program, authored a research paper in 2019 that found that from 1966 to 2015, “the number of undergraduate economics degrees conferred to Black women was stagnant, and there was a decrease in the number of doctorates conferred to Black men.”

So why does the economics field still have such a massive disparity in minority representation? What needs to happen for systemic progress to be made? Amazon Science sat down with Sharpe and Swinton to ask those questions, as well as why Howard hosting the summer program is so significant, and what advice they would give to students considering economics as a major or profession. We also talked with Amazon chief economist Pat Bajari to find out why Amazon is sponsoring next summer’s AEASP program, and why he thinks diversity within the economics profession is essential.

A Howard University sign on the Howard campus
The AEASP will celebrate its 50th anniversary in 2024 at Howard University.
Oscar Merrida IV

Why does economics still have such a significant diversity problem?

Omari H. Swinton: I don't know that economics, as a profession, has really agreed that there's a problem. I think that's one of the big issues—we’ll say there's a problem, but nothing ever changes. You oftentimes hear people say things like, ‘We want to increase diversity’ but don't actually make any changes. They just say that that's something that they want to do.

It’s not as if these things haven't been out there. There are people out there who have dedicated their lives to bringing these types of issues to the forefront. I go back to Sandy Darity as an example. If you read from his earlier work, he's talking about these issues. Gregory Price has chronicled which institutions have Black economists in them. Rhonda has been looking at these issues for years.

Whether the economics profession is really ready to change is the issue. There have been a lot of people who have been talking about these issues for years. Others have come out and mentioned these problems more recently, but they ignore the fact that people have been talking about issues of underrepresentation for years.

Rhonda Vonshay Sharpe on the campus of Howard University
Rhonda Vonshay Sharpe says economics needs to define what diversity means. "If you don't define it, you can't measure it, or hold folks accountable."
Oscar Merrida IV

Rhonda Vonshay Sharpe: I narrow the problem down to be three things: 1) Economics has never defined what diversity means, and if you don't define it, you can't measure it, or hold folks accountable; 2) We don't have accurate data to track progress. We need to collect data that can be disaggregated by characteristics that have been used to limit participation in the profession. For example, when you talk about women, that usually means white women, and when we talk in terms of race, then you're really talking about men, and both of those descriptors are biased; and 3) As Omari said, there's enormous erasure happening. People have been doing this a long time, yet newcomers who have recently gotten tenure suddenly feel bad. They are handed a mic as if they are now the authorities. They don’t bother to understand whose shoulders they're standing on.

What needs to happen to address this problem? What role can academic institutions and companies like Amazon play?

Sharpe: I don't think the answer is to hire more Black economists. I really don't. And here is why: Because I think that when people say, ‘hire more Black economists’, people do just that, they hire Black economists. They do not think about whether or not those Black economists are bringing lived experiences that are going to help you craft policies to better interact with your customers.

One of the things I've been saying to folks recently is we need to talk more about structural classism and the ways in which we treat folks who are poor. So, it's not just about hiring Black economists, it's not about hiring Hispanic economists. It's about hiring folks who have lived experience in the US that will get at the inequality and related issues. That's not going to be solved just by hiring an economist because they are non-white.

Omari H. Swinton, the chair of Howard University's Department of Economics, on Howard's campus.
Omari H. Swinton says the AEASP program coming to Howard "is important because this is what our program is designed to do: increase minority participation in the economics profession."
Oscar Merrida IV

Swinton: If you say you want to diversify the profession, then stop looking at things that are not really problems. For example, there's not really a pipeline problem. You can ask almost any economics professor who teaches Principles of Economics, and most will tell you that is probably one of the worst classes to use if you want somebody to be interested in economics as a profession. But it really hasn't changed in years.

One change that we're making in the summer program is the experiential internship, or experiential learning. We’re going to place students with think tanks and corporations to actually see what an economist outside of the academy does. Everybody that gets a PhD in economics isn't going to be able to get a job as a professor. What does it look like to be an economist at Amazon? What does it look like to be an economist at the Census Bureau or at Brookings? Those are entirely different experiences. We’re trying to partner with as many different organizations as possible.

Hopefully we'll see change at those institutions, because students will come to the summer program, have that experience, and want to go back to those institutions. Rather than wanting to be a professor, they will, for example, say, ‘I want to be an economist at the Census Bureau, because I believe this research is important.’ It’s important for organizations, public and private, to be available to students, so they can see the type of experiences they can have if they work for you.

Pat Bajari
Pat Bajari, Amazon vice president and chief economist
Carl Clark, Amazon Imaging Studio

Pat Bajari: As an economist, I have always thought of this is in terms of diminishing returns. If you always have the same type of viewpoint, and keep hiring replicas of that viewpoint, the returns you get from that eventually decrease. Having different viewpoints allows you to do better work. And because we serve a large and diverse base of customers, we have a large and diverse base of problems. We want to take a leading role in supporting a new generation of economists from underrepresented minorities—it is not only the right thing to do, but it will also help bring strong and diverse voices that will create an even more inclusive customer experience.

When individuals come from different backgrounds, they bring different perspectives to the table. You do better work when you have different perspectives.
Pat Bajari

Swinton: One thing organizations can do is find programs that are actually successful at achieving the types of goals they’re pursuing. For example, some of the research done by Becker et al. shows that about 20 percent of Blacks that have PhDs in economics have attended the AEASP program. By helping support Howard in hosting AEASP in this first year, Amazon is doing that. Without Amazon’s support, Howard wouldn't be able to host the AEA summer program at all. We certainly hope others will follow Amazon’s lead.

What is the significance of the summer program coming to Howard?

Swinton: The summer program is extremely important in my path as an economist. My first cohort of economists were the people that I met through the summer program. Howard is the number one producer as an undergraduate feeder of Blacks who go on to get PhDs in economics. This is our mission and one of our goals as an institution and as a department, and I think the AEA summer program coming to Howard is important because this is what our program is designed to do: increase minority participation in the economics profession.

The National Economics Association summer program came out of Marcus Alexis’ mind as a program to help get minorities interested in economics. For the AEASP program to come to Howard at this point in time is a great honor. It’s an honor to be the first HBCU to host the summer program.

Sharpe: I'm excited to see a program that's going to be led by Blacks, which I think is incredibly important, as the program will celebrate 50 years while it's at Howard in 2024. It just feels full circle in terms of thinking about Marcus Alexis, who was a Black economist, and then having the program 50 years later be at an institution that is the number one producer of Black economists. That's incredibly exciting.

Finally, what advice would you give to someone considering whether to pursue a degree in economics? Why is economics such an important field?

Bajari: A lot of economics is understanding people's material wellbeing. Who has low wages? Who has high wages? If you take a given policy, whether that's central bank policy or interventions into labor markets, etcetera, these things deeply, deeply, deeply affect people's lives, people's material outcomes. What they can purchase and where they can live and where they can send their kids to school and so forth. It's an important set of questions, and they range from micro things about what happens to the individual, to macro things, such as how the whole world is evolving and changing in response to things like COVID-19.

Howard University's Founders Library
Howard University's Founders Library is seen here. Howard is the first Black college to host AEASP.
Oscar Merrida IV

If we change policy or somebody goes to college versus doesn't go to college, what are the implications of those economic variables? I know this is what attracted me to economics. As a young person, growing up pretty poor in rural Minnesota, I was interested in the world and how it worked. And I liked economics because it brought math and data and scientific formalism to those questions. That's not the only way you can look at those questions, or the only way you should look at them, but it’s one way that's highly useful.

Sharpe: For students pursuing a PhD in economics, my main advice is to pick a PhD program that's a good fit for you. Many students think that if you don't go to a top program, you can't have a successful career. That’s not true. I went to Claremont Graduate University, not highly ranked, but I had an amazing time as a graduate student. I loved it. My mentee when I was in graduate school was Olugbenga Ajilore who’s at CAP (Center for American Progress) now, who is a rock star right now in terms of being in the news and asking people to think about rural communities. He and I didn't go to top economics departments, but we went to places that were good fits for us, and that's incredibly important.

Bajari: “Technology economics” is a booming field. The largest conference held by the National Association of Business Economists is now the tech economics conference. It’s larger than their annual conference now, because it's been an explosive area of job growth for young people. We are one of the larger private sector employers of economists. When you're in that role, you have an obligation to demonstrate leadership. We saw sponsorship of AEASP as an opportunity to expose young PhDs to this emerging field. I thought Howard was very thoughtful about their proposal, and I'm hoping AEASP can help us establish a pipeline of highly qualified candidates.

Swinton: I talk to students about this all the time. You want to make a change, and you want to be a policy maker? Be an economist. You want to go into business and work on Wall Street, make a lot of money? Be an economist. Economics is one of the most useful majors because it allows you the opportunity you to go out and do a wide variety of things based on the basic training you obtain.

Applications for the summer program are open and the deadline to apply is January 31, 2021. To apply, visit economics.howard.edu/aeasp. The program will be held May 27 to July 25, 2021, and be offered in Washington, D.C., contingent upon COVID-19 restrictions.

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
US, WA, Seattle
The Selling Partner Experience (SPX) organization strives to make Amazon the best place for Selling Partners to do business. The SPX Science team is building an AI-powered conversational assistant to transform the Selling Partner experience. The Selling Assistant is a trusted partner and a seasoned advisor that’s always available to enable our partners to thrive in Amazon’s stores. It takes away the cognitive load of selling on Amazon by providing a single interface to handle a diverse set of selling needs. The assistant always stays by the seller's side, talks to them in their language, enables them to capitalize on opportunities, and helps them accomplish their business goals with ease. It is powered by the state-of-the-art Generative AI, going beyond a typical chatbot to provide a personalized experience to sellers running real businesses, large and small. Do you want to join an innovative team of scientists, engineers, product and program managers who use the latest Generative AI and Machine Learning technologies to help Amazon create a delightful Selling Partner experience? Do you want to build solutions to real business problems by automatically understanding and addressing sellers’ challenges, needs and opportunities? Are you excited by the prospect of contributing to one of Amazon’s most strategic Generative AI initiatives? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use state-of-the-art Machine Learning and Generative AI techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model benchmarking, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. We are focused on building seller facing AI-powered tools using the latest science advancements to empower sellers to drive the growth of their business. We strive to radically simplify the seller experience, lowering the cognitive burden of selling on Amazon by making it easy to accomplish critical tasks such as launching new products, understanding and complying with Amazon’s policies and taking actions to grow their business.
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Growth organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Senior Applied Scientist to lead us to identify data-driven insight and opportunities to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of scientists and engineers, you will solve complex problems to identify actionable opportunities, and collaborate with engineering, research, and business teams for future innovation. You need to have deep understanding on the business domain and have the ability to connect business with science. You are also strong in ML modeling and scientific foundation with the ability to collaborate with engineering to put models in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As a Sr. Applied Scientist in the team, you will: - Identify opportunities to improve SP growth and translate those opportunities into science problems via principled statistical solutions (e.g. ML, causal, RL). - Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in MLOps. - Design and lead roadmaps for complex science projects to help SP have a delightful selling experience while creating long term value for our shoppers. - Work with our engineering partners and draw upon your experience to meet latency and other system constraints. - Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. - Be responsible for communicating our science innovations to the broader internal & external scientific community.
US, CA, Sunnyvale
Our team leads the development and optimization of on-device ML models for Amazon's hardware products, including audio, vision, and multi-modal AI features. We work at the critical intersection of ML innovation and silicon design, ensuring AI capabilities can run efficiently on resource-constrained devices. Currently, we enable production ML models across multiple device families, including Echo, Ring/Blink, and other consumer devices. Our work directly impacts Amazon's customer experiences in consumer AI device market. The solutions we develop determine which AI features can be offered on-device versus requiring cloud connectivity, ultimately shaping product capabilities and customer experience across Amazon's hardware portfolio. This is a unique opportunity to shape the future of AI in consumer devices at unprecedented scale. You'll be at the forefront of developing industry-first model architectures and compression techniques that will power AI features across millions of Amazon devices worldwide. Your innovations will directly enable new AI features that enhance how customers interact with Amazon products every day. Come join our team! Key job responsibilities As a Principal Applied Scientist, you will: • Own the technical architecture and optimization strategy for ML models deployed across Amazon's device ecosystem, from existing to yet-to-be-shipped products. • Develop novel model architectures optimized for our custom silicon, establishing new methodologies for model compression and quantization. • Create an evaluation framework for model efficiency and implement multimodal optimization techniques that work across vision, language, and audio tasks. • Define technical standards for model deployment and drive research initiatives in model efficiency to guide future silicon designs. • Spend the majority of your time doing deep technical work - developing novel ML architectures, writing critical optimization code, and creating proof-of-concept implementations that demonstrate breakthrough efficiency gains. • Influence architecture decisions impacting future silicon generations, establish standards for model optimization, and mentor others in advanced ML techniques.