Amazon Redshift re-invented research paper and photos of Rahul Pathak, vice president of analytics at AWS, and Ippokratis Pandis, AWS senior principal engineer
The "Amazon Redshift re-invented" research paper will be presented at a leading database conference next month. Two of the paper's authors, Rahul Pathak (top right), vice president of analytics at AWS, and Ippokratis Pandis (bottom right), an AWS senior principal engineer, discuss the origins of Redshift, how the system has evolved in the past decade, and where they see the service evolving in the years ahead.

Amazon Redshift: Ten years of continuous reinvention

Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

Nearly ten years ago, in November 2012 at the first-ever Amazon Web Services (AWS) re:Invent, Andy Jassy, then AWS senior vice president, announced the preview of Amazon Redshift, the first fully managed, petabyte-scale cloud data warehouse. The service represented a significant leap forward from traditional on-premises data warehousing solutions, which were expensive, inflexible, and required significant human and capital resources to operate.

In a blog post on November 28, 2012, Werner Vogels, Amazon chief technical officer, highlighted the news: “Today, we are excited to announce the limited preview of Amazon Redshift, a fast and powerful, fully managed, petabyte-scale data warehouse service in the cloud.”

Further in the post, Vogels added, “The result of our focus on performance has been dramatic. Amazon.com’s data warehouse team has been piloting Amazon Redshift and comparing it to their on-premise data warehouse for a range of representative queries against a two billion row data set. They saw speedups ranging from 10x – 150x!”

That’s why, on the day of the announcement, Rahul Pathak, then a senior product manager, and the entire Amazon Redshift team were confident the product would be popular.

“But we didn’t really understand how popular,” he recalls.

“At preview we asked customers to sign up and give us some indication of their data volume and workloads,” Pathak, now vice president of Relational Engines at AWS, said. “Within about three days we realized that we had ten times more demand for Redshift than we had planned for the entire first year of the service. So we scrambled right after re:Invent to accelerate our hardware orders to ensure we had enough capacity on the ground for when the product became generally available in early 2013. If we hadn’t done that preview, we would have been caught short.”

The Redshift team has been sprinting to keep apace of customer demand ever since. Today, the service is used by tens of thousands of customers to process exabytes of data daily. In June a subset of the team will present the paper “Amazon Redshift re-invented ” at a leading international forum for database researchers, practitioners, and developers, the ACM SIGMOD/PODS Conference in Philadelphia.

Related content
Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

The paper highlights four key areas where Amazon Redshift has evolved in the past decade, provides an overview of the system architecture, describes its high-performance transactional storage and compute layers, details how smart autonomics are provided, and discusses how AWS and Redshift make it easy for customers to use the best set of services to meet their needs.

Amazon Science recently connected with two of the paper’s authors, Pathak, and Ippokratis Pandis, an AWS senior principal engineer, to discuss the origins of Redshift, how the system has evolved over the past decade, and where they see the service evolving in the years ahead.

  1. Q. 

    Can you provide some background on the origin story for Redshift? What were customers seeking, and how did the initial version address those needs?

    A. 

    Rahul: We had been meeting with customers who in the years leading up to the launch of Amazon Redshift had moved just about every workload they had to the cloud except for their data warehouse. In many cases, it was the last thing they were running on premises, and they were still dealing with all of the challenges of on-premises data warehouses. They were expensive, had punitive licensing, were hard to scale, and customers couldn’t analyze all of their data. Customers told us they wanted to run data warehousing at scale in the cloud, that they didn’t want to compromise on performance or functionality, and that it had to be cost-effective enough for them to analyze all of their data.

    So, this is what we started to build, operating under the code name Cookie Monster. This was at a time when customers’ data volumes were exploding, and not just from relational databases, but from a wide variety of sources. One of our early private beta customers tried it and the results came back so fast they thought the system was broken. It was about 10 to 20 times faster than what they had been using before. Another early customer was pretty unhappy with gaps in our early functionality. When I heard about their challenges, I got in touch, understood their feedback, and incorporated it into the service before we made it generally available in February 2013. This customer soon turned into one of our biggest advocates.

    When we launched the service and announced our pricing at $1000 a terabyte per year, people just couldn’t believe we could offer a product with that much capability at such a low price point. The fact that you could provision a data warehouse in minutes instead of months also caught everyone’s attention. It was a real game-changer for this industry segment.

    Ippokratis: I was at IBM Research at the time working on database technologies there, and we recognized that providing data warehousing as a cloud service was a game changer. It was disruptive. We were working with customers’ on-premises systems where it would take us several days or weeks to resolve an issue, whereas with a cloud data warehouse like Redshift, it would take minutes. It was also apparent that the rate of innovation would accelerate in the cloud.

    In the on-premises world, it was taking months if not years to get new functionality into a software release, whereas in the cloud new capabilities could be introduced in weeks, without customers having to change a single line of code in their consuming applications. The Redshift announcement was an inflection point; I got really interested in the cloud, and cloud data warehouses, and eventually joined Amazon [Ippokratis joined the Redshift team as a principal engineer in Oct. 2015].

  2. Q. 

    How has Amazon Redshift evolved over the past decade since the launch nearly 10 years ago?

    A. 

    Ippokratis: As we highlight in the paper, the service has evolved at a rapid pace in response to customers’ needs. We focused on four main areas: 1) customers’ demand for high-performance execution of increasingly complex analytical queries; 2) our customers’ need to process more data and significantly increase the number of users who need to derive insights from that data; 3) customers’ need for us to make the system easier to use; and 4) our customers’ desire to integrate Redshift with other AWS services, and the AWS ecosystem. That’s a lot, so we’ll provide some examples across each dimension.

    Related publication
    Enterprise companies use spatial data for decision optimization and gain new insights regarding the locality of their business and services. Industries rely on efficiently combining spatial and business data from different sources, such as data warehouses, geospatial information systems, transactional systems, and data lakes, where spatial data can be found in structured or unstructured form. In this demonstration

    Offering the leading price performance has been our primary focus since Rahul first began working on what would become Redshift. From the beginning, the team has focused on making core query execution latency as low as possible so customers can run more workloads, issue more jobs into the system, and run their daily analysis. To do this, Redshift generates C++ code that is highly optimized and then sends it to the distributor in the parallel database and executes this highly optimized code. This makes Redshift unique in the way it executes queries, and it has always been the core of the service.

    We have never stopped innovating here to deliver our customers the best possible performance. Another thing that’s been interesting to me is that in the traditional business intelligence (BI) world, you optimize your system for very long-running jobs. But as we observe the behavior of our customers in aggregate, what’s surprising is that 90 percent of our queries among the billions we run daily in our service execute in less than one second. That’s not what people had traditionally expected from a data warehouse, and that has changed the areas of the code that we optimize.

    Rahul: As Ippokratis mentioned, the second area we focused on in the paper was customers’ need to process more data and to use that data to drive value throughout the organization. Analytics has always been super important, but eight or ten years ago it wasn’t necessarily mission critical for customers in the same way transactional databases were. That has definitely shifted. Today, core business processes rely on Redshift being highly available and performant. The biggest architectural change in the past decade in support of this goal was the introduction of Redshift Managed Storage, which allowed us to separate compute and storage, and focus a lot of innovation in each area.

    Diagram of the Redshift Managed Storage
    The Redshift managed storage layer (RMS) is designed for a durability of 99.999999999% and 99.99% availability over a given year, across multiple availability zones. RMS manages both user data as well as transaction metadata.

    Another big trend has been the desire of customers to query across and integrate disparate datasets. Redshift was the first data warehouse in the cloud to query Amazon S3 data, that was with Redshift Spectrum in 2017. Then we demonstrated the ability to run a query that scanned an exabyte of data in S3 as well as data in the cluster. That was a game changer.

    Customers like NASDAQ have used this extensively to query data that’s on local disk for the highest performance, but also take advantage of Redshift’s ability to integrate with the data lake and query their entire history of data with high performance. In addition to querying the data lake, integrated querying of transactional data stores like Aurora and RDS has been another big innovation, so customers can really have a high-performance analytics system that’s capable of transparently querying all of the data that matters to them without having to manage these complex integration processes that other systems require.

    Illustration of how a query flows through Redshift.
    This diagram from the research paper illustrates how a query flows through Redshift. The sequence is described in detail on pages 2 and 3 of the paper.

    Ippokratis: The third area we focused on in the paper was ease of use. One change that stands out for me is that on-premises data warehousing required IT departments to have a DBA (data base administrator) who would be responsible for maintaining the environment. Over the past decade, the expectation from customers has evolved. Now, if you are offering data warehousing as a service, the systems must be capable of auto tuning, auto healing, and auto optimizing. This has become a big area of focus for us where we incorporate machine learning and automation into the system to make it easier to use, and to reduce the amount of involvement required of administrators.

    Rahul: In terms of ease of use, three innovations come to mind. One is concurrency scaling. Similar to workload management, customers would previously have to manually tweak concurrency or reset clusters of the manually split workloads. Now, the system automatically provisions new resources and scales up and down without customers having to take any action. This is a great example of how Redshift has gotten much more dynamic and elastic.

    The second ease of use innovation is automated table optimization. This is another place where the system is able to observe workloads and data layouts and automatically suggest how data should be sorted and distributed across nodes in the cluster. This is great because it’s a continuously learning system so workloads are never static in time.

    Related publication
    How should we split data among the nodes of a distributed data warehouse in order to boost performance for a forecasted workload? In this paper, we study the effect of different data partitioning schemes on the overall network cost of pairwise joins. We describe a generally-applicable data distribution framework initially designed for Amazon Redshift, a fully-managed petabyte-scale data warehouse in the

    Customers are always adding more datasets, and adding more users, so what was optimal yesterday might not be optimal tomorrow. Redshift observes this and modifies what's happening under the covers to balance that. This was the focus of a really interesting graph optimization paper that we wrote a few years ago about how to analyze for optimal distribution keys for how data is laid out within a multi-node parallel-processing system. We've coupled this with automated optimization and then table encoding. In an analytics system, how you compress data has a big impact because the less data you scan, the faster your queries go. Customers had to reason about this in the past. Now Redshift can automatically determine how to encode data correctly to deliver the best possible performance for the data and the workload.

    The third innovation I want to highlight here is Amazon Redshift Serverless, which we launched in public preview at re:Invent last fall. Redshift Serverless removes all of the management of instances and clusters, so customers can focus on getting to insights from data faster and not spend time managing infrastructure. With Redshift Serverless, customers can simply provision an endpoint and begin to interact with their data, and Redshift Serverless will auto scale and automatically manage the system to essentially remove all of that complexity from customers.

    Customers can just focus on their data, set limits to manage their budgets, and we deliver optimal performance between those limits. This is another massive step forward in terms of ease of use because it eliminates any operations for customers. The early response to the preview has been tremendous. Thousands of customers have been excited to put Amazon Redshift Serverless through its paces over the past few months, and we’re excited about making it generally available in the near future.

    Amazon Redshift architecture diagram
    The Amazon Redshift architecture as presented in the research paper.

    Ippokratis: A fourth area of focus in the paper is on integration with other AWS services, and the AWS ecosystem. Integration is another area where customer behavior has evolved from traditional BI use cases. Today, cloud data warehouses are a central hub with tight integration with a broader set of AWS services. We provided the ability for customers to join data from the warehouse with the data lake. Then customers said they needed access to high-velocity business data in operational databases like Aurora and RDS, so we provided access to these operational data stores. Then we added support for streams, as well as integration with SageMaker and Lambda so customers can run machine learning training and inference without moving their data, and do generic compute. As a result, we’ve converted the traditional BI system into a well-integrated set of AWS services.

    Rahul: One big area of integration has been with our machine-learning ecosystem. With Redshift ML we have enabled anyone who knows SQL to take advantage of all of our machine-learning innovation. We built the ability to create a model from the SQL prompt, which gets the data into Amazon S3 and calls Amazon SageMaker, to use automated machine learning to build the most appropriate model to provide predictions on the data.

    This model is compiled efficiently and brought back into the data warehouse for customers to run very high-performance parallel inferences with no additional compute or no extra cost. The beauty of this integration is that every innovation we make within SageMaker means that Redshift ML gets better as well. This is just another means by which customers benefit from us connecting our services together.

    Related content
    Amazon researchers describe new method for distributing database tables across servers.

    Another big area for integration has been data sharing. Once we separated storage and compute layers with RA3 instances, we could enable data sharing, giving customers the ability to share data with clusters in the same account, and other accounts, or across regions. This allows us to separate consumers from producers of data, which enables things like modern data mesh architectures. Customers can share data without data copying, so they are transactionally consistent across accounts.

    For example, users within a data-science organization can securely work from the shared data, as can users within the reporting or marketing organization. We’ve also integrated data sharing with AWS Data Exchange, so now customers can search for — and subscribe to — third-party datasets that are live, up to date, and can be queried immediately in Redshift. This has been another game changer from the perspective of setting data free, enabling data monetization for third-party providers, and secure and live data access and licensing for subscribers for high-performance analytics within and across organizations. The fact that Redshift is part of an incredibly rich data ecosystem is a huge win for customers, and in keeping with customers’ desire to make data more pervasively available across the company.

  3. Q. 

    You indicate in the paper that Redshift innovation is continuing at an accelerated pace.  How do you see the cloud data warehouse segment evolving – and more specifically Redshift – over the next several years?

    A. 

    Rahul: A few things will continue to be true as we head into the future. Customers will be generating ever more amounts of data, and they’re going to want to analyze that data more cost effectively. Data volumes are growing exponentially, but obviously customers don't want their costs growing exponentially. This requires that we continue to innovate, and find new levels of performance to ensure that the cost of processing a unit of data continues to go down.

    We’ll continue innovating in software, in hardware, in silicon, and in using machine learning to make sure we deliver on that promise for customers. We’ve delivered on that promise for the past 10 years, and we’ll focus on making sure we deliver on that promise into the future.

    I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.
    Ippokratis Pandis

    Also, customers are always going to want better availability, they’re always going to want their data to be secure, and they’re always going to want more integrations with more data sources, and we intend to continue to deliver on all of those. What will stay the same is our ability to offer the-best in-segment price performance and capabilities, and the best-in-segment integration and security because they will always deliver value for customers.

    Ippokratis: It has been an incredible journey; we have been rebuilding the plane as we’ve been flying it with customers onboard, and this would not have happened without the support of AWS leadership, but most importantly the tremendous engineers, managers, and product people who have worked on the team.

    As we did in the paper, I want to recognize the contributions of Nate Binkert and Britt Johnson, who have passed, but whose words of wisdom continue to guide us. We’ve taken data warehousing, what we learned from books in school (Ippokratis earned his PhD in electrical and computer engineering from Carnegie Mellon University) and brought it to the cloud. In the process, we’ve been able to innovate, and write new pages in the book. I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.

    View from space of a connected network around planet Earth representing the Internet of Things.
    Sign up for our newsletter

Research areas

Related content

US, WA, Seattle
Job description: We are reimagining Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, (Bayesian) time series, macroeconomic, as well as basic familiarity with Matlab, R, or Python is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
RO, Iasi
Amazon’s mission is to be earth’s most customer-centric company and our team is the guardian of our customer’s privacy. Amazon SDO Privacy engineering operates in Austin – TX, US and Iasi, Bucharest – Romania. Our mission is to develop services which will enable every Amazon service operating with personal data to satisfy the privacy rights of Amazon customers. We are working backwards from the customers and world-wide privacy regulations, think long term, and propose solutions which will assure Amazon Privacy compliance. Our external customers are world-wide customers of Amazon Retail Website, Amazon B2B services (e.g. Seller central, App / Skill Developers), and Amazon Subsidiaries. Our internal customers are services within Amazon who operate with personal data, Legal Representatives, and Customer Service Agents. You can opt-in for being part of one of the existing or newly formed engineering teams who will contribute to Amazon mission to meet external customers’ privacy rights: Personal Data Classification, The Right to be forgotten, The right of access, or Digital Markets Act – The Right of Portability. The ideal candidate has a great passion for data and an insatiable desire to learn and innovate. A commitment to team work, hustle and strong communication skills (to both business and technical partners) are absolute requirements. Creating reliable, scalable, and high-performance products requires a sound understanding of the fundamentals of Computer Science and practical experience building large-scale distributed systems. Your solutions will apply to all of Amazon’s consumer and digital businesses including but not limited to Amazon.com, Alexa, Kindle, Amazon Go, Prime Video and more. Key job responsibilities As an data scientist on our team, you will apply the appropriate technologies and best practices to autonomously solve difficult problems. You'll contribute to the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. You will collaborate with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. Your work will directly impact the trust customers place in Amazon Privacy, globally.
JP, 13, Tokyo
The JP Economics team is a central science team working across a variety of topics in the JP Retail business and beyond. We work closely with JP business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel economic/econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with JP- EU- and US-based interdisciplinary teams. In this role, you will build ground-breaking, state-of-the-art causal inference models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, econometrics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. Contribute to building a strong data science community in Amazon Asia.
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.
US, CA, Cupertino
We're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect our customers' data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities Deeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community. Engage with our customers to develop understanding of their needs. Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving. Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare. Author papers and present your work internally and externally. Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning. About the team Our small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services. Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale. We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, NY, New York
Search Thematic Ad Experience (STAX) team within Sponsored Products is looking for a leader to lead a team of talented applied scientists working on cutting-edge science to innovate on ad experiences for Amazon shoppers!. You will manage a team of scientists, engineers, and PMs to innovate new widgets on Amazon Search page to improve shopper experience using state-of-the-art NLP and computer vision models. You will be leading some industry first experiences that has the potential to revolutionize how shopping looks and feels like on Amazon, and e-commerce marketplaces in general. You will have the opportunity to design the vision on how ad experiences look on Amazon search page, and use the combination of advanced techniques and continuous experimentation to realize this vision. Your work will be core to Amazon’s advertising business. You will be a significant contributor in building the future of sponsored advertising, directly impacting the shopper experience for our hundreds of millions of shoppers worldwide, while delivering significant value for hundreds of thousands of advertisers across the purchase journey with ads on Amazon. Key job responsibilities * Be the technical leader in Machine Learning; lead efforts within the team, and collaborate and influence across the organization. * Be a critic, visionary, and execution leader. Invent and test new product ideas that are powered by science that addresses key product gaps or shopper needs. * Set, plan, and execute on a roadmap that strikes the optimal balance between short term delivery and long term exploration. You will influence what we invest in today and tomorrow. * Evangelize the team’s science innovation within the organization, company, and in key conferences (internal and external). * Be ruthless with prioritization. You will be managing a team which is highly sought after. But not all can be done. Have a deep understanding of the tradeoffs involved and be fierce in prioritizing. * Bring clarity, direction, and guidance to help teams navigate through unsolved problems with the goal to elevate the shopper experience. We work on ambiguous problems and the right approach is often unknown. You will bring your rich experience to help guide the team through these ambiguities, while working with product and engineering in crisply defining the science scope and opportunities. * Have strong product and business acumen to drive both shopper improvements and business outcomes. A day in the life * Lead a multidisciplinary team that embodies “customer obsessed science”: inventing brand new approaches to solve Amazon’s unique problems, and using those inventions in software that affects hundreds of millions of customers * Dive deep into our metrics, ongoing experiments to understand how and why they are benefitting our shoppers (or not) * Design, prototype and validate new widgets, techniques, and ideas. Take end-to-end ownership of moving from prototype to final implementation. * Be an advocate and expert for STAX science to leaders and stakeholders inside and outside advertising. About the team We are the Search thematic ads experience team within Sponsored products - a fast growing team of customer-obsessed engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives to drive value for both our customers and advertisers, through continuous innovation. We focus on new ads experiences globally to help shoppers make the most informed purchase decision while helping shortcut the time to discovery that shoppers are highly likely to engage with. We also harvest rich contextual and behavioral signals that are used to optimize our backend models to continually improve the shopper experience. We obsess about our customers and are continuously seeking opportunities to delight them.
US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.