Amazon Redshift re-invented research paper and photos of Rahul Pathak, vice president of analytics at AWS, and Ippokratis Pandis, AWS senior principal engineer
The "Amazon Redshift re-invented" research paper will be presented at a leading database conference next month. Two of the paper's authors, Rahul Pathak (top right), vice president of analytics at AWS, and Ippokratis Pandis (bottom right), an AWS senior principal engineer, discuss the origins of Redshift, how the system has evolved in the past decade, and where they see the service evolving in the years ahead.

Amazon Redshift: Ten years of continuous reinvention

Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

Nearly ten years ago, in November 2012 at the first-ever Amazon Web Services (AWS) re:Invent, Andy Jassy, then AWS senior vice president, announced the preview of Amazon Redshift, the first fully managed, petabyte-scale cloud data warehouse. The service represented a significant leap forward from traditional on-premises data warehousing solutions, which were expensive, inflexible, and required significant human and capital resources to operate.

In a blog post on November 28, 2012, Werner Vogels, Amazon chief technical officer, highlighted the news: “Today, we are excited to announce the limited preview of Amazon Redshift, a fast and powerful, fully managed, petabyte-scale data warehouse service in the cloud.”

Further in the post, Vogels added, “The result of our focus on performance has been dramatic. Amazon.com’s data warehouse team has been piloting Amazon Redshift and comparing it to their on-premise data warehouse for a range of representative queries against a two billion row data set. They saw speedups ranging from 10x – 150x!”

That’s why, on the day of the announcement, Rahul Pathak, then a senior product manager, and the entire Amazon Redshift team were confident the product would be popular.

“But we didn’t really understand how popular,” he recalls.

“At preview we asked customers to sign up and give us some indication of their data volume and workloads,” Pathak, now vice president of Relational Engines at AWS, said. “Within about three days we realized that we had ten times more demand for Redshift than we had planned for the entire first year of the service. So we scrambled right after re:Invent to accelerate our hardware orders to ensure we had enough capacity on the ground for when the product became generally available in early 2013. If we hadn’t done that preview, we would have been caught short.”

The Redshift team has been sprinting to keep apace of customer demand ever since. Today, the service is used by tens of thousands of customers to process exabytes of data daily. In June a subset of the team will present the paper “Amazon Redshift re-invented ” at a leading international forum for database researchers, practitioners, and developers, the ACM SIGMOD/PODS Conference in Philadelphia.

Related content
Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

The paper highlights four key areas where Amazon Redshift has evolved in the past decade, provides an overview of the system architecture, describes its high-performance transactional storage and compute layers, details how smart autonomics are provided, and discusses how AWS and Redshift make it easy for customers to use the best set of services to meet their needs.

Amazon Science recently connected with two of the paper’s authors, Pathak, and Ippokratis Pandis, an AWS senior principal engineer, to discuss the origins of Redshift, how the system has evolved over the past decade, and where they see the service evolving in the years ahead.

  1. Q. 

    Can you provide some background on the origin story for Redshift? What were customers seeking, and how did the initial version address those needs?

    A. 

    Rahul: We had been meeting with customers who in the years leading up to the launch of Amazon Redshift had moved just about every workload they had to the cloud except for their data warehouse. In many cases, it was the last thing they were running on premises, and they were still dealing with all of the challenges of on-premises data warehouses. They were expensive, had punitive licensing, were hard to scale, and customers couldn’t analyze all of their data. Customers told us they wanted to run data warehousing at scale in the cloud, that they didn’t want to compromise on performance or functionality, and that it had to be cost-effective enough for them to analyze all of their data.

    So, this is what we started to build, operating under the code name Cookie Monster. This was at a time when customers’ data volumes were exploding, and not just from relational databases, but from a wide variety of sources. One of our early private beta customers tried it and the results came back so fast they thought the system was broken. It was about 10 to 20 times faster than what they had been using before. Another early customer was pretty unhappy with gaps in our early functionality. When I heard about their challenges, I got in touch, understood their feedback, and incorporated it into the service before we made it generally available in February 2013. This customer soon turned into one of our biggest advocates.

    When we launched the service and announced our pricing at $1000 a terabyte per year, people just couldn’t believe we could offer a product with that much capability at such a low price point. The fact that you could provision a data warehouse in minutes instead of months also caught everyone’s attention. It was a real game-changer for this industry segment.

    Ippokratis: I was at IBM Research at the time working on database technologies there, and we recognized that providing data warehousing as a cloud service was a game changer. It was disruptive. We were working with customers’ on-premises systems where it would take us several days or weeks to resolve an issue, whereas with a cloud data warehouse like Redshift, it would take minutes. It was also apparent that the rate of innovation would accelerate in the cloud.

    In the on-premises world, it was taking months if not years to get new functionality into a software release, whereas in the cloud new capabilities could be introduced in weeks, without customers having to change a single line of code in their consuming applications. The Redshift announcement was an inflection point; I got really interested in the cloud, and cloud data warehouses, and eventually joined Amazon [Ippokratis joined the Redshift team as a principal engineer in Oct. 2015].

  2. Q. 

    How has Amazon Redshift evolved over the past decade since the launch nearly 10 years ago?

    A. 

    Ippokratis: As we highlight in the paper, the service has evolved at a rapid pace in response to customers’ needs. We focused on four main areas: 1) customers’ demand for high-performance execution of increasingly complex analytical queries; 2) our customers’ need to process more data and significantly increase the number of users who need to derive insights from that data; 3) customers’ need for us to make the system easier to use; and 4) our customers’ desire to integrate Redshift with other AWS services, and the AWS ecosystem. That’s a lot, so we’ll provide some examples across each dimension.

    Related publication
    Enterprise companies use spatial data for decision optimization and gain new insights regarding the locality of their business and services. Industries rely on efficiently combining spatial and business data from different sources, such as data warehouses, geospatial information systems, transactional systems, and data lakes, where spatial data can be found in structured or unstructured form. In this demonstration

    Offering the leading price performance has been our primary focus since Rahul first began working on what would become Redshift. From the beginning, the team has focused on making core query execution latency as low as possible so customers can run more workloads, issue more jobs into the system, and run their daily analysis. To do this, Redshift generates C++ code that is highly optimized and then sends it to the distributor in the parallel database and executes this highly optimized code. This makes Redshift unique in the way it executes queries, and it has always been the core of the service.

    We have never stopped innovating here to deliver our customers the best possible performance. Another thing that’s been interesting to me is that in the traditional business intelligence (BI) world, you optimize your system for very long-running jobs. But as we observe the behavior of our customers in aggregate, what’s surprising is that 90 percent of our queries among the billions we run daily in our service execute in less than one second. That’s not what people had traditionally expected from a data warehouse, and that has changed the areas of the code that we optimize.

    Rahul: As Ippokratis mentioned, the second area we focused on in the paper was customers’ need to process more data and to use that data to drive value throughout the organization. Analytics has always been super important, but eight or ten years ago it wasn’t necessarily mission critical for customers in the same way transactional databases were. That has definitely shifted. Today, core business processes rely on Redshift being highly available and performant. The biggest architectural change in the past decade in support of this goal was the introduction of Redshift Managed Storage, which allowed us to separate compute and storage, and focus a lot of innovation in each area.

    Diagram of the Redshift Managed Storage
    The Redshift managed storage layer (RMS) is designed for a durability of 99.999999999% and 99.99% availability over a given year, across multiple availability zones. RMS manages both user data as well as transaction metadata.

    Another big trend has been the desire of customers to query across and integrate disparate datasets. Redshift was the first data warehouse in the cloud to query Amazon S3 data, that was with Redshift Spectrum in 2017. Then we demonstrated the ability to run a query that scanned an exabyte of data in S3 as well as data in the cluster. That was a game changer.

    Customers like NASDAQ have used this extensively to query data that’s on local disk for the highest performance, but also take advantage of Redshift’s ability to integrate with the data lake and query their entire history of data with high performance. In addition to querying the data lake, integrated querying of transactional data stores like Aurora and RDS has been another big innovation, so customers can really have a high-performance analytics system that’s capable of transparently querying all of the data that matters to them without having to manage these complex integration processes that other systems require.

    Illustration of how a query flows through Redshift.
    This diagram from the research paper illustrates how a query flows through Redshift. The sequence is described in detail on pages 2 and 3 of the paper.

    Ippokratis: The third area we focused on in the paper was ease of use. One change that stands out for me is that on-premises data warehousing required IT departments to have a DBA (data base administrator) who would be responsible for maintaining the environment. Over the past decade, the expectation from customers has evolved. Now, if you are offering data warehousing as a service, the systems must be capable of auto tuning, auto healing, and auto optimizing. This has become a big area of focus for us where we incorporate machine learning and automation into the system to make it easier to use, and to reduce the amount of involvement required of administrators.

    Rahul: In terms of ease of use, three innovations come to mind. One is concurrency scaling. Similar to workload management, customers would previously have to manually tweak concurrency or reset clusters of the manually split workloads. Now, the system automatically provisions new resources and scales up and down without customers having to take any action. This is a great example of how Redshift has gotten much more dynamic and elastic.

    The second ease of use innovation is automated table optimization. This is another place where the system is able to observe workloads and data layouts and automatically suggest how data should be sorted and distributed across nodes in the cluster. This is great because it’s a continuously learning system so workloads are never static in time.

    Related publication
    How should we split data among the nodes of a distributed data warehouse in order to boost performance for a forecasted workload? In this paper, we study the effect of different data partitioning schemes on the overall network cost of pairwise joins. We describe a generally-applicable data distribution framework initially designed for Amazon Redshift, a fully-managed petabyte-scale data warehouse in the

    Customers are always adding more datasets, and adding more users, so what was optimal yesterday might not be optimal tomorrow. Redshift observes this and modifies what's happening under the covers to balance that. This was the focus of a really interesting graph optimization paper that we wrote a few years ago about how to analyze for optimal distribution keys for how data is laid out within a multi-node parallel-processing system. We've coupled this with automated optimization and then table encoding. In an analytics system, how you compress data has a big impact because the less data you scan, the faster your queries go. Customers had to reason about this in the past. Now Redshift can automatically determine how to encode data correctly to deliver the best possible performance for the data and the workload.

    The third innovation I want to highlight here is Amazon Redshift Serverless, which we launched in public preview at re:Invent last fall. Redshift Serverless removes all of the management of instances and clusters, so customers can focus on getting to insights from data faster and not spend time managing infrastructure. With Redshift Serverless, customers can simply provision an endpoint and begin to interact with their data, and Redshift Serverless will auto scale and automatically manage the system to essentially remove all of that complexity from customers.

    Customers can just focus on their data, set limits to manage their budgets, and we deliver optimal performance between those limits. This is another massive step forward in terms of ease of use because it eliminates any operations for customers. The early response to the preview has been tremendous. Thousands of customers have been excited to put Amazon Redshift Serverless through its paces over the past few months, and we’re excited about making it generally available in the near future.

    Amazon Redshift architecture diagram
    The Amazon Redshift architecture as presented in the research paper.

    Ippokratis: A fourth area of focus in the paper is on integration with other AWS services, and the AWS ecosystem. Integration is another area where customer behavior has evolved from traditional BI use cases. Today, cloud data warehouses are a central hub with tight integration with a broader set of AWS services. We provided the ability for customers to join data from the warehouse with the data lake. Then customers said they needed access to high-velocity business data in operational databases like Aurora and RDS, so we provided access to these operational data stores. Then we added support for streams, as well as integration with SageMaker and Lambda so customers can run machine learning training and inference without moving their data, and do generic compute. As a result, we’ve converted the traditional BI system into a well-integrated set of AWS services.

    Rahul: One big area of integration has been with our machine-learning ecosystem. With Redshift ML we have enabled anyone who knows SQL to take advantage of all of our machine-learning innovation. We built the ability to create a model from the SQL prompt, which gets the data into Amazon S3 and calls Amazon SageMaker, to use automated machine learning to build the most appropriate model to provide predictions on the data.

    This model is compiled efficiently and brought back into the data warehouse for customers to run very high-performance parallel inferences with no additional compute or no extra cost. The beauty of this integration is that every innovation we make within SageMaker means that Redshift ML gets better as well. This is just another means by which customers benefit from us connecting our services together.

    Related content
    Amazon researchers describe new method for distributing database tables across servers.

    Another big area for integration has been data sharing. Once we separated storage and compute layers with RA3 instances, we could enable data sharing, giving customers the ability to share data with clusters in the same account, and other accounts, or across regions. This allows us to separate consumers from producers of data, which enables things like modern data mesh architectures. Customers can share data without data copying, so they are transactionally consistent across accounts.

    For example, users within a data-science organization can securely work from the shared data, as can users within the reporting or marketing organization. We’ve also integrated data sharing with AWS Data Exchange, so now customers can search for — and subscribe to — third-party datasets that are live, up to date, and can be queried immediately in Redshift. This has been another game changer from the perspective of setting data free, enabling data monetization for third-party providers, and secure and live data access and licensing for subscribers for high-performance analytics within and across organizations. The fact that Redshift is part of an incredibly rich data ecosystem is a huge win for customers, and in keeping with customers’ desire to make data more pervasively available across the company.

  3. Q. 

    You indicate in the paper that Redshift innovation is continuing at an accelerated pace.  How do you see the cloud data warehouse segment evolving – and more specifically Redshift – over the next several years?

    A. 

    Rahul: A few things will continue to be true as we head into the future. Customers will be generating ever more amounts of data, and they’re going to want to analyze that data more cost effectively. Data volumes are growing exponentially, but obviously customers don't want their costs growing exponentially. This requires that we continue to innovate, and find new levels of performance to ensure that the cost of processing a unit of data continues to go down.

    We’ll continue innovating in software, in hardware, in silicon, and in using machine learning to make sure we deliver on that promise for customers. We’ve delivered on that promise for the past 10 years, and we’ll focus on making sure we deliver on that promise into the future.

    I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.
    Ippokratis Pandis

    Also, customers are always going to want better availability, they’re always going to want their data to be secure, and they’re always going to want more integrations with more data sources, and we intend to continue to deliver on all of those. What will stay the same is our ability to offer the-best in-segment price performance and capabilities, and the best-in-segment integration and security because they will always deliver value for customers.

    Ippokratis: It has been an incredible journey; we have been rebuilding the plane as we’ve been flying it with customers onboard, and this would not have happened without the support of AWS leadership, but most importantly the tremendous engineers, managers, and product people who have worked on the team.

    As we did in the paper, I want to recognize the contributions of Nate Binkert and Britt Johnson, who have passed, but whose words of wisdom continue to guide us. We’ve taken data warehousing, what we learned from books in school (Ippokratis earned his PhD in electrical and computer engineering from Carnegie Mellon University) and brought it to the cloud. In the process, we’ve been able to innovate, and write new pages in the book. I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.

Research areas

Related content

US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning (ML) and Artificial Intelligence (AI)? Would you be excited to apply AI algorithms to solve real world problems with significant impact? The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Senior Data Scientist to help customers implement AI/ML solutions and realize transformational business opportunities. This is a team of scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop scalable solutions and applications, and launch them in production. The team provides guidance and implements best practices for applying AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using AI/ML and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an experienced Senior Data Scientist, you will be responsible for: 1. Lead end-to-end AI/ML and GenAI projects, from understanding business needs to data preparation, model development, solution deployment, and post-production monitoring 2. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate AI algorithms and build ML systems and operations (MLOps) using AWS services to address real-world challenges 3. Interact with customers directly to understand the business challenges, deliver briefing and deep dive sessions to customers and guide them on adoption patterns and paths to production 4. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations tailored to technical, business, and executive stakeholders 5. Provide customer and market feedback to product and engineering teams to help define product direction This is a customer-facing role with potential travel to customer sites as needed. About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next-level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Key job responsibilities * Partner with laboratory science teams on design and analysis of experiments * Originate and lead the development of new data collection workflows with cross-functional partners * Develop and deploy scalable bioinformatics analysis and QC workflows * Evaluate and incorporate novel bioinformatic approaches to solve critical business problems About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.