Amazon Consumer Science Summit goes virtual

COVID-19-induced trend toward virtual conferences may change how science is conducted.

COVID-19 has caused massive disruption around the globe. That includes the myriad of science conferences held each year. With the pandemic now forcing the cancellation of nearly all in-person events, these conferences have gone virtual.

Amazon is a participant in this trend. In late September, for instance, Amazon’s consumer science organization held its seventh annual Consumer Science Summit, which focused on science applications for economic decision-making, with topics ranging from operations research and econometrics, to statistics and machine learning.  Originally planned as a 200-person conference to be held at a resort in Washington state, event organizers considered how best to proceed. Their final decision: move the summit online.

No one was sure quite what to expect, but the outcome was surprisingly positive. Without the need to limit attendees due to space constraints, and without the need for participants to build travel days into their schedule or worry about acquiring a US visa, attendance was more than four times that of previous in-person events. Moreover, prominent scientists who otherwise might have been unable to attend in person were able to deliver virtual keynote talks.

Ping Xu, forecasting science director, standing outside in front of a rainbow.
Ping Xu, forecasting science director within Amazon's Supply Chain Optimization Technologies (SCOT) organization, was one of the organizers of this year's Consumer Science Summit.

“In this age of isolation and uncertainty, it turns out this event helped us return to the roots of science — the exchange of ideas,” said Ping Xu, forecasting science director within Amazon’s Supply Chain Optimization Technologies organization.

In fact, scientists everywhere are discovering that a well-run virtual event can have benefits that extend beyond an in-person conference.

The Scientist magazine, for instance, reported on an August conference held by the Society for Mathematical Biology and the European Society for Mathematical and Theoretical Biology. Originally set for Heidelberg, Germany, the virtual conference created virtual space so it would provide for socializing, networking, and mentoring, as well as hearing talks, seeing posters, and visiting the meeting’s corporate sponsors.  

Plus, the roughly 1,800 attendees represented more than 90 countries — two to three times as many as at previous in-person meetings. 

The move to virtual scientific conferences poses some intriguing questions. Will it make science more collaborative and multidisciplinary? Or will people lose the chance for serendipitous connections that are the staple of in-person event?

In an effort to make up for the lack of in-person interaction, Consumer Science Summit organizers took advantage of online tools to facilitate collaboration among virtual attendees. The conference had its own Slack channel, for instance, and networking coffee breaks occurred over Chime. The four-day conference included the presentation of 208 papers and abstracts, 5 keynote, 28 lightning, and 12 technical talks, and 2 fireside chats. 

The keynote talks included presentations by Ming Lin, a computer science professor  at the University of Maryland; Anna Nagurney, the John F. Smith Memorial Professor within the Department of Operations and Information Management at the University of Massachusetts Amherst Isenberg School of Management; Susan Athey, an economics of technology professor at Stanford University, and senior fellow of the Stanford Institute for Economic Policy Research; Nassim Taleb, distinguished professor of risk engineering at the NYU Tandon School of Engineering, and author of several books, including “The Black Swan”; and Gerard Cachon, a professor within the Operations, Information and Decisions Department at the University of Pennsylvania Wharton School. The two fireside chats were with Scott Aronson, the David J. Bruton Centennial Professor of Computer Science at the University of Texas at Austin, and Swami Sivasubramanian, vice president, AWS machine learning. Below are three of those keynote talks.

Nassim Taleb: Statistical consequences of fat tails
In this keynote talk, Professor Taleb discusses concepts from the first version of his Technical Incerto: Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications.
Gerard Cachon: Human vs. robot workers in fulfillment center pick processes
In his keynote talk, Professor Cachon talks about new research he has conducted with Omar Besbes, a professor at Columbia University Business School.
Anna Nagurney: Optimization of food supply chain networks: Why quality, trade instruments, and labor all matter
In her keynote talk, which she dedicated to essential workers, Professor Nagurney discusses her latest research on food supply chain networks.

“It was much better than I expected, given my first exposure to the technology that we would rely upon,” says Robert Stine, senior principal scientist within SCOT. “Some aspects, such as the recorded lightning talks worked very well.  This format was better than the awkward in-person version — and could be combined nicely with online meetings and poster sessions.”

Adds Mauricio Resende, a principal scientist within Amazon’s Transportation Services organization: “I attended the previous four summits, and was pleasantly surprised at how well this virtual conference ran. We had a few glitches where people had to refresh their browsers, but otherwise there were no delays, no problems with the live presentations — or the recorded ones.  And we had a much larger audience.”

Ping Xu, the event’s sponsor, agrees.

“I thought it went really well,” she says. “I was really glad to see that we could draw a wider audience by going virtual. Plus, we learned a lot about how to manage a virtual conference. For instance, one thing I learned is that the virtual format encourages a broader engagement but an in-person format encourages a deeper engagement. For our 2021 conference, we are entertaining a hybrid approach where we can offer online talks for a larger audience but still allow in-person celebrations and discussions.

It was hard at times not to miss the more social aspects of an in-person conference, where scientists can connect with peers they’ve worked with before and perhaps make new connections.

“I still prefer in-person conferences,” says Resende. “They give me a chance to bump into old friends and make new ones. I have begun many a collaboration or paper on the basis of unexpected meetings at conferences.”

In this age of isolation and uncertainty, it turns out this event helped us return to the roots of science – the exchange of ideas
Ping Xu, forecasting science director

Some event organizers are aware of that shortcoming and have developed clever ways to address it.  One conference, for instance, asked participants to write a short description of their work and research interests. That information was then run through an algorithm that matched up attendees with similar interests.   

Prior to the COVID-19 pandemic, there already was a movement within the machine learning science community to allow remote paper and poster presentations at scientific conferences.

Turing Award winner Joshua Bengio is a supporter of the movement allowing more virtual presentations of papers and poster sessions, saying in a blog post that he believes “we should rethink these events with the objective of eliminating the resulting carbon footprint.”

In the post, Bengio suggests the science community could consider decentralized conferences, where instead of having a conference at one location, meeting places could be established — at least one on each continent — so that scientists could attend their “local” meeting.

Some think scientists working remotely more often would have greater impact than having science conferences adopt a completely remote model.

“I think the impact of working virtually reduces carbon footprint more than the impact of going from an in-person conference model to a virtual model,” says Resende. “I have worked remotely two or three days a week since 1988. Virtual conferencing reduces the need to see people face-to-face, but doesn’t eliminate it.”

Other drawbacks include sometimes having too much to choose from, reducing focus. And virtual conference-goers have the same challenge as remote workers everywhere: giving full attention to a conference speaker when emails are coming in and phones are ringing.

Nonetheless, most scientists expect to be attending more virtual conferences in the foreseeable future, if largely because of COVID-19.

On the plus side, a world of virtual conferences will improve as conference organizers grow accustomed to virtual formats, and new conferencing tools become available.  Events are apt to draw more people — as the Amazon summit did — and can take advantage of a wider pool of speakers.

But will that improve science?

“Perhaps,” says Stine. “But there already are lots of ways to exchange ideas virtually, such as ArXiv for sharing manuscripts. And universities now post lectures and seminars on-line. That all might change, of course, with a new generation of scientists who have grown up on virtual campuses.”

No matter if in-person or virtual, the key is the exchange of ideas.  In opening the Consumer Science Summit, Xu, the forecasting science director who helped organize the consumer summit, quoted George Bernard Shaw.

“If you have an apple and I have an apple and we exchange these apples, then you and I will each have an apple. But if you have an idea and I have an idea and we exchange these ideas, then each of us will have two ideas.”

Whether virtual or in-person, the primary purpose of science conferences remains the same: the exchange of ideas as researchers stand on the shoulders of the giants who preceded them, seeking to advance the science.

Related content

US, WA, Seattle
At Amazon, we strive every day to be Earth’s most customer centric company. Selling Partner Experience Science (SPeXSci) delivers on this by building AI-enhanced experiences, optimization, and automation that help third-party sellers build more successful businesses. This includes recommendations that drive growth and AI-enhanced assistance for troubleshooting issues. There are many challenges that we confront caused by the volume, diversity, and complexity of our selling partner's needs… and we are always striving to do better. Do you want to join an innovative team who creatively applies techniques ranging from statistics and traditional machine learning to deep learning and natural language processing? A team that drives our flywheel of improvement by hunting down opportunities to do better that are buried in tens of millions of solved cases? Are you interested in helping us redefine what world class support can be in an age of automation and AI, while prizing human empathy and ingenuity? The SPeXSci Team is looking for an Applied Scientist to build statistical and machine learning solutions that help us understand and solve our most challenging problems. We need to better understand our Sellers and the problems they face, to design permanent fixes to recurring problems, to anticipate problems so that we are prepared to deal with them, to measure our success at delighting our customers, and to identify opportunities to grow and improve. In this role, you will have ownership of the end-to-end development of solutions to complex problems and you will play an integral role in strategic decision-making. You will also work closely with engineers, operations teams, product owners to build ML pipelines, platforms and solutions that solve problems of defect detection, automation, and workforce optimization. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA
US, WA, Seattle
As a Senior Data Scientist with expertise in Machine Learning (ML), development and use of multi-model models, utilizing diverse sets of large data you will work with a team of Applied Scientists and Software Engineers to build innovative foundation models for robotic manipulation utilizing computer vision and scene perception technology. Your role will focus first on feature engineering, data collection and data usage from large data sets across Fulfillment Technologies and Robotics (FTR), with an eye on strategy going forward to unify a data strategy across organizations. This position requires high levels of analytical thinking, ability to quickly approach large ambiguous problems and apply analytics, technical and engineering expertise to rapidly analyze, validate, visualize, prototype and deliver solutions. Key job responsibilities - Utilize expertise in feature engineering on massive data sets through exploratory data analysis across existing large data sets in Fulfillment Technologies and Robotics (FTR). Help identify areas where we could create new data sources that would improve training capabilities based on understanding of how different scenes in FCs could impact the trained model and ultimately performance of robotic manipulation. - Identify data requirements, build methodology and data modeling strategy across the diverse data sets for both short-term and long-term needs - Work closely with Applied Scientists in building FM solutions, ensuring that the data strategy fits the experimentation paths, as well as contribute to the FM strategy through identifying opportunities based on the data - Work with and develop large datasets (training/fine tuning) and bring large datasets together to inform both training in FOMO as well as across FTR - Design and implement data solutions, working closely with engineers to guide on best paths for building data pipelines and infrastructure for model training - Collaborate across teams both within and outside of FOMO on data strategy A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
IN, KA, Bangalore
Are you interested in changing the Digital Reading Experience? We are from Kindle Books Team looking for a set of Scientists to take the reading experience in Kindle to next level with a set of innovations! We envision Kindle as the place where readers find the best manifestation of all written content optimized with features that enable them to get the most out of reading, and creators are able to realize their vision to customers quickly and at scale. Every time customers open their content, regardless of surface, they start or restart their reading in a familiar, useful and engaging place. We achieve this by building a strong foundation of core experiences and act as a force multiplier and partner for content creators (directly or indirectly) to easily innovate on top of Kindle's purpose built content experience stack in a simple and extensible way. We will achieve this by providing a best-in-class reading experience, unique content experiences, and remaining agile in meeting the evolving needs and preferences of our users. Our goal is to foster long-lasting reading habits and make us the preferred destination for enriching literary experiences. We are building a In The Book Science team and looking for Scientists, who are passionate about Reading and are willing to take Reading to the next level. Every Book is a complex structure with different entities, layout, format and semantics, with more than 17MM eBooks in our catalog. We are looking for experts in all domains like core NLP, Generative AI, CV and Deep Learning Techniques for unlocking capabilities like analysis, enhancement, curation, moderation, translation, transformation and generation in Books based on Content structure, features, Intent & Synthesis. Scientists will focus on Inside the book content and semantically learn the different entities to enhance the Reading experience overall (Kindle & beyond). They have an opportunity to influence in 2 major phases of life-cycle - Publishing (Creation of Books process) and Reading experience (building engaging features & representation in the book thereby driving reading engagement). Key job responsibilities - 3+ years of building machine learning models for business application experience - PhD, or Master's degree and 2+ years of applied research experience - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience programming in Java, C++, Python or related language - You have expertise in one of the applied science disciplines, such as machine learning, natural language processing, computer vision, Deep learning - You are able to use reasonable assumptions, data, and customer requirements to solve problems. - You initiate the design, development, execution, and implementation of smaller components with input and guidance from team members. - You work with SDEs to deliver solutions into production to benefit customers or an area of the business. - You assume responsibility for the code in your components. You write secure, stable, testable, maintainable code with minimal defects. - You understand basic data structures, algorithms, model evaluation techniques, performance, and optimality tradeoffs. - You follow engineering and scientific method best practices. You get your designs, models, and code reviewed. You test your code and models thoroughly - You participate in team design, scoping and prioritization discussions. You are able to map a business goal to a scientific problem and map business metrics to technical metrics. - You invent, refine and develop your solutions to ensure they are meeting customer needs and team goals. You keep current with research trends in your area of expertise and scrutinize your results. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test solutions to improve our experience. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, model development and productionizing the same. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. We are open to hiring candidates to work out of one of the following locations: Bangalore, IND | Bangalore, KA, IND
JP, 13, Tokyo
日本の大学で機械学習や関連領域の研究に従事している学生の皆様に向けたフェローシッププログラムのご案内です。Amazon JapanのRetail Scienceチームでは、何百万人もの顧客にインパクトを与える価値あるテクノロジーに繋がるような、新しいプロトタイプやコンセプトを開発するプロジェクトに従事していただく学生を募集しています。プログラムは1ヶ月から3ヶ月の短期間のプロジェクトになります。 プロジェクトの対象となるテーマには、自然言語処理、表現学習、レコメンデーションシステム、因果推論といった領域が含まれますが、これらに限定されるわけではありません。プロジェクトは、チームのシニアサイエンティスト1名または複数名のガイダンスのもとで定義、遂行され、プロジェクト中は他のサイエンティストもメンターとしてフォローします。 学生の皆様が新しいモデルを考案したり、新しいテクノロジーを活用し実験する時間を最大化できるようにすることが目標です。そのため、プロジェクトではエンジニアリングやスケーリングよりも、プロトタイピングを行い具体的に概念実証を行うことに集中します。 また、Amazonでは論文出版も推奨しています。従事した研究開発活動の成果物として出版される論文には著者として参加することになります。 フェローシッププログラムは目黒の東京オフィスで、他のチームと一緒に行われます。Amazonは、プログラム期間中に必要なIT機器(ラップトップなど)、給与と通勤費を支給します。 Are you a current PhD student enrolled in a Japanese university researching Statistics, Machine Learning, Economics, or a related discipline? The Japan Retail Science team is looking for Fellows for short term (1-3 months) projects to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be assigned a project to carry out from areas including but not limited to natural language processing, representation learning, recommender systems, or causal inference. The project will be defined and carried out under the supervision of one or more of our senior scientists, and you will be assigned another scientist as a mentor to follow you during the project. Our goal is to maximize the time you spend on inventing new models and experimenting with new techniques, so the work will concentrate on prototyping and creating a tangible proof of concept, rather than engineering and scaling. Amazon encourages publications, and you will be included as an author of any published manuscript. The fellowship will be carried out from our Tokyo office in Meguro together with the rest of the team. Amazon will provide the necessary IT equipment (laptop, etc.) for the duration of the fellowship, a salary, and commuting expenses. A day in the life - チームの多くのメンバーは、午前9時くらいから10時半くらいまでの間に仕事を始め、夕方6時から7時には仕事を終えています。出席が必要なミーティングに参加していれば、勤務時間は自由に決められます。 - パートタイムを希望する場合、勤務時間数は採用担当者とともに決定します。フルタイムの場合、労働時間は通常の契約通り週40時間となります。 - オフィスは目黒にあり、週3回の出社が必要です。残りの2日間はリモートワーク、オフィスへの出勤いずれも可能です。 - The majority of the team starts working between 9 and 10.30am until 18-19. You will have complete flexibility to determine your working hours as long as you are present for the meetings where your attendance is required. - Number of working hours will be determined together with the hiring manager in case you want to pursue the Fellowship part-time. In case of full-time, working hours will be 40/week as per a standard contract. - Our office is located in Meguro, and presence in the office is required 3 times/week. You are free to work remotely for the remaining two days or come to the office if you prefer. About the team 私たちのチームは、日本および世界のすべてのAmazonのベンダー企業に提供されるソリューションを支える製品を発明し、開発しています。私たちは、プロダクトマネージャーやビジネス関係者と協力し、科学的なモデルを開発し、インパクトのあるアプリケーションに繋げることで、Amazonのベンダー企業がより速く成長し、顧客により良いサービスを提供できるようにします。 私たちは、科学者同士のコラボレーションが重要であり、孤立した状態で仕事をしても、幸せなチームにはならないと考えています。私たちは、科学者が専門性を高め、最先端の技術についていけるよう、社内の仕組みを通じて継続的に学ぶことに重きを置いています。私たちの目標は、世界中のAmazonのベンダーソリューションの主要なサイエンスチームとなることです。 Our team invents and develops products powering the solutions offered to all Amazon vendors, in Japan and worldwide. We interact with Product Managers and Business stakeholders to develop rigorous science models that are linked to impactful applications helping Amazon vendors grow faster and better serving their customers. We believe that collaboration between scientists is paramount, and working in isolation does not lead to a happy team. We place strong emphasis on continuous learning through internal mechanisms for our scientists to keep on growing their expertise and keep up with the state of the art. Our goal is to be primary science team for vendor solutions in Amazon, worldwide. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
JP, 13, Tokyo
日本の大学で機械学習や関連領域の研究に従事している学生の皆様に向けたフェローシッププログラムのご案内です。Amazon JapanのRetail Scienceチームでは、何百万人もの顧客にインパクトを与える価値あるテクノロジーに繋がるような、新しいプロトタイプやコンセプトを開発するプロジェクトに従事していただく学生を募集しています。プログラムは1ヶ月から3ヶ月の短期間のプロジェクトになります。 プロジェクトの対象となるテーマには、自然言語処理、表現学習、レコメンデーションシステム、因果推論といった領域が含まれますが、これらに限定されるわけではありません。プロジェクトは、チームのシニアサイエンティスト1名または複数名のガイダンスのもとで定義、遂行され、プロジェクト中は他のサイエンティストもメンターとしてフォローします。 学生の皆様が新しいモデルを考案したり、新しいテクノロジーを活用し実験する時間を最大化できるようにすることが目標です。そのため、プロジェクトではエンジニアリングやスケーリングよりも、プロトタイピングを行い具体的に概念実証を行うことに集中します。 また、Amazonでは論文出版も推奨しています。従事した研究開発活動の成果物として出版される論文には著者として参加することになります。 フェローシッププログラムは目黒の東京オフィスで、他のチームと一緒に行われます。Amazonは、プログラム期間中に必要なIT機器(ラップトップなど)、給与と通勤費を支給します。 Are you a current PhD student enrolled in a Japanese university researching Statistics, Machine Learning, Economics, or a related discipline? The Japan Retail Science team is looking for Fellows for short term (1-3 months) projects to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be assigned a project to carry out from areas including but not limited to natural language processing, representation learning, recommender systems, or causal inference. The project will be defined and carried out under the supervision of one or more of our senior scientists, and you will be assigned another scientist as a mentor to follow you during the project. Our goal is to maximize the time you spend on inventing new models and experimenting with new techniques, so the work will concentrate on prototyping and creating a tangible proof of concept, rather than engineering and scaling. Amazon encourages publications, and you will be included as an author of any published manuscript. The fellowship will be carried out from our Tokyo office in Meguro together with the rest of the team. Amazon will provide the necessary IT equipment (laptop, etc.) for the duration of the fellowship, a salary, and commuting expenses. A day in the life - チームの多くのメンバーは、午前9時くらいから10時半くらいまでの間に仕事を始め、夕方6時から7時には仕事を終えています。出席が必要なミーティングに参加していれば、勤務時間は自由に決められます。 - パートタイムを希望する場合、勤務時間数は採用担当者とともに決定します。フルタイムの場合、労働時間は通常の契約通り週40時間となります。 - オフィスは目黒にあり、週3回の出社が必要です。残りの2日間はリモートワーク、オフィスへの出勤いずれも可能です。 - The majority of the team starts working between 9 and 10.30am until 18-19. You will have complete flexibility to determine your working hours as long as you are present for the meetings where your attendance is required. - Number of working hours will be determined together with the hiring manager in case you want to pursue the Fellowship part-time. In case of full-time, working hours will be 40/week as per a standard contract. - Our office is located in Meguro, and presence in the office is required 3 times/week. You are free to work remotely for the remaining two days or come to the office if you prefer. About the team 私たちのチームは、日本および世界のすべてのAmazonのベンダー企業に提供されるソリューションを支える製品を発明し、開発しています。私たちは、プロダクトマネージャーやビジネス関係者と協力し、科学的なモデルを開発し、インパクトのあるアプリケーションに繋げることで、Amazonのベンダー企業がより速く成長し、顧客により良いサービスを提供できるようにします。 私たちは、科学者同士のコラボレーションが重要であり、孤立した状態で仕事をしても、幸せなチームにはならないと考えています。私たちは、科学者が専門性を高め、最先端の技術についていけるよう、社内の仕組みを通じて継続的に学ぶことに重きを置いています。私たちの目標は、世界中のAmazonのベンダーソリューションの主要なサイエンスチームとなることです。 Our team invents and develops products powering the solutions offered to all Amazon vendors, in Japan and worldwide. We interact with Product Managers and Business stakeholders to develop rigorous science models that are linked to impactful applications helping Amazon vendors grow faster and better serving their customers. We believe that collaboration between scientists is paramount, and working in isolation does not lead to a happy team. We place strong emphasis on continuous learning through internal mechanisms for our scientists to keep on growing their expertise and keep up with the state of the art. Our goal is to be primary science team for vendor solutions in Amazon, worldwide. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
US, WA, Seattle
Selling Partner Promotions is seeking a Sr. Economist to use econometric and machine learning techniques to help offer Customers high quality deals and promotions. This role will be a key member of a team of scientists supporting the Pricing and Promotions related business. The Sr. Economist will work closely with other research scientists, machine learning experts, and economists to design and run experiments, research new algorithms, and find new ways to improve Seller Pricing and Promotions to optimize the Customer experience. Key job responsibilities - Build economic models to quantify the causal impact of pricing actions and promotions on customers and sellers. - Build models to define, measure and optimize for high quality deals - Define and execute an extensive experimental roadmap to test hypotheses and validate the outputs of models. - Create models that allow an optimization of selling partner ROI and customer long-term value. - Evaluate and validate the proposed models via offline benchmark tests as well as online A/B tests in production. - Publish and present your work at internal and external scientific venues. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
IN, KA, Bengaluru
The Amazon Artificial Generative Intelligence (AGI) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
US, WA, Seattle
We’re working to improve shopping on Amazon using the conversational capabilities of LLMs, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, across the breadth of Amazon Shopping and AGI to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
The Identity and Diagnostics Engineering for Advertising (IDEA) team owns two charters: Identity and Diagnostics. The Identity (a.k.a. Identity Hub) program was established to be the single source of truth for all advertiser identity dimensions, offering authoritative and comprehensive views of an advertiser across all channels (ads, retail, partners, and real world). The Diagnostics program is responsible for building comprehensive issue identification capabilities across the ads lifecycle to empower advertisers and Amazon internal teams to identify problems affecting ads, campaigns, and accounts through access to accurate, timely, and easy-to-understand diagnostics. To this end we are currently engaged in the process of architecting building and rolling out key mission critical solutions to Amazon’s Advertising product stack which will make it seamless for millions of Advertisers to access vital information impacting the performance of their digital Ads across the entire foot print of Amazon digital properties. We are currently recruiting experienced Applied Scientists who enjoy solving technical challenges at massive scale, simplifying and eliminating complexity as well as demonstrate a high sense of ownership and the ability to drive solutions from inception to delivery. We have a strong culture of innovation, solving problems in creative ways and our track record of accomplishment’s speaks for itself. You will be joining a high-performing team at the core of the Amazon Ad’s ecosystem. You will be responsible for the entire development lifecycle, from feature ideation to experimentation and development to operational excellence. We will be counting on you to have strong technical skills - you should be able to lead the design, implementation, and successful delivery of solutions for scientifically-complex problems and systems in production, which can be brand new or evolving from existing ones. You will heavily influence the design and write a significant portion of critical-path code. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA