Philip Resnik, speaker at the ML Summit and a professor at the University of Maryland in the Department of Linguistics and at the Institute for Advanced Computer Studies
Philip Resnik, a professor at the University of Maryland in the Department of Linguistics and at the Institute for Advanced Computer Studies, is applying machine learning techniques to social media data in an attempt to make predictions about mental health.

3 questions with Philip Resnik: Analyzing social media to understand the risks of suicide

Resnik is a featured speaker at the first virtual Amazon Web Services Machine Learning Summit on June 2.

The first Amazon Web Services (AWS) Machine Learning Summit on June 2 will bring together customers, developers, and the science community to learn about advances in the practice of machine learning (ML). The event, which is free to attend, will feature four audience-focused tracks, including Science of Machine Learning.

Register for the free ML Summit

The goal of the summit is to bring together customers, developers, and the science community to learn about advances in machine learning. Click here to register.

The science track is focused on the data science and advanced practitioner audience, and will highlight the work AWS and Amazon scientists are doing to advance machine learning. The track will comprise six sessions, each lasting 30 minutes, and a 45-minute fireside chat.

In the coming weeks, Amazon Science will feature interviews with speakers from the Science of Machine Learning track. For the third edition of the series, we spoke to Philip Resnik, a professor at the University of Maryland in the Department of Linguistics and at the Institute for Advanced Computer Studies. Over the past three decades, Resnik’s work has focused on advancing the state of the art in natural language processing (NLP) by finding the right balance between data-driven computational modeling and expert domain knowledge.

Resnik received an Amazon Machine Learning Research Award (MLRA) in 2018 and 2019. Along with his colleagues, he is applying machine learning techniques to social media data in an attempt to make predictions about important aspects of mental health, with a focus on the problem of suicide risk.

Q. What is the subject of your talk going to be at the ML Summit?

I’ll be talking about using NLP and machine learning to tackle high-impact problems in mental health, particularly related to suicide. Many of us have had contact with someone suffering from mental health issues. However, we often lack an understanding of the true scope and scale of the problem.

Hear from two more ML Summit speakers

Michael Kearns talked about designing socially aware algorithms and models and Marzia Polito discussed how AWS customers are training and deploying computer vision models with a scarcity of data.

The global cost of mental health problems is right up there with cardiovascular disease, and the annual economic burden is more than the combined cost of cancer, diabetes, and respiratory diseases. Even before the pandemic, suicide was already a global tragedy in its own right. In the wake of COVID-19, there’s a worsening “echo pandemic” as people struggle with isolation, stress, and sustained disruptions in their day-to-day lives.

Q. Why is this topic especially relevant within the science community today?

Developing a nuanced understanding of language and the signal it contains is critical to mental healthcare. There are no blood tests for mental health problems. Even though brain imaging technology is improving rapidly, we can’t simply peer inside people’s heads and see the markers of mental illness.

Developing a nuanced understanding of language and the signal it contains is critical to mental healthcare.
Philip Resnik

However, language can provide an essential window into a person’s well-being. Mental health providers assess a patient’s condition in clinical interviews. Psychotherapy is also a language-based process. In the gaps between these clinical encounters, people’s everyday use of language can provide a crucial window into their experiences, behavior, and mental state. To use a term coined by Glen Coppersmith, there is an increasing quantity of language in that “clinical whitespace” now available online, and accessible in ways it hasn’t been before.

At the same time, human language is at the heart of the current machine learning revolution. Consider the most exciting developments in NLP and machine learning, like advances in our ability to represent meaning, make plausible inferences, discover patterns, and predict behavior. These are driven by the trifecta of the availability of text in enormous quantities, new computational ideas for utilizing this information, and computing power to apply those ideas at scale.

Improving mental health with data, natural language processing, and machine learning is a relevant and intriguing topic for the scientific community. It’s both an exciting problem space, and an underappreciated opportunity for technological research to translate into social good.

Q. What are some of the challenges in using NLP and machine learning to tackle high-impact problems in mental health?

One key challenge involves doing this work in ways that respect privacy.

The most meaningful progress in machine learning takes place when a large number of research teams explore different approaches to solving a problem using a common problem definition and a shared dataset.  However, mental health data — and data in healthcare more generally — is very sensitive, which makes that kind of community-level focus hard to accomplish.

To tackle this problem, I have adopted the idea of the data enclave: instead of sending datasets out to researchers, you bring the researchers to the data instead. The work takes place entirely within a secure infrastructure, and nothing leaves the platform without careful review.

As scientists and technologists, we’re not spending enough time asking the question, 'Then what?' We can’t just work on the technical aspects of the problem and expect other people to figure out the right way to use it.
Philip Resnik

I’ve been working with collaborators at NORC at the University of Chicago to develop the UMD/NORC Mental Health Data Enclave, a secure environment where researchers can deploy the full arsenal of NLP and machine learning techniques to make progress on problems involving sensitive mental health data.

Another challenge is that thinking about technology alone is not enough. Too often, as scientists and technologists, we’re not spending enough time asking the question, “Then what?” Even if the technology works wonderfully, how would we integrate it into the mental healthcare ecosystem in a way that is appropriately respectful of ethical issues, the practical considerations for providers, and the needs of patients?

We can’t just work on the technical aspects of the problem and expect other people to figure out the right way to use it. “Then what?” needs to be guiding our thinking from the very beginning. For this to happen, effective collaboration between technologists and mental health experts is a must.

You can learn about Resnik's research here, and watch his virtual talk at the virtual AWS Machine Learning Summit on June 2 by registering at the link below.

AWS Machine Learning Summit CTA
The summit is free to attend, features over 30 sessions, and includes a live Q&A.

Related content

US, WA, Seattle
The Global Media Entertainment Science team uses state of the art economics and machine learning models to provide Amazon’s entertainment businesses guidance on strategically important questions. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Product Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. The Search Relevance team focuses on several technical areas for improving search quality. In this role, you will invent universally applicable signals and algorithms for training machine-learned ranking models. The relevance improvements you make will help millions of customers discover the products they want from a catalog containing millions of products. You will work on problems such as predicting the popularity of new products, developing new ranking features and algorithms that capture unique characteristics, and analyzing the differences in behavior of different categories of customers. The work will span the whole development pipeline, including data analysis, prototyping, A/B testing, and creating production-level components. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world’s leading Internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Please visit https://www.amazon.science for more information
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Do you have a strong machine learning background and want to help build new speech and language technology? Amazon is looking for PhD students who are ready to tackle some of the most interesting research problems on the leading edge of natural language processing. We are hiring in all areas of spoken language understanding: NLP, NLU, ASR, text-to-speech (TTS), and more! A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will develop and implement novel scalable algorithms and modeling techniques to advance the state-of-the-art in technology areas at the intersection of ML, NLP, search, and deep learning. You will work side-by-side with global experts in speech and language to solve challenging groundbreaking research problems on production scale data. The ideal candidate must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon has positions available for Natural Language Processing & Speech Intern positions in multiple locations across the United States. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. Please visit our website to stay updated with the research our teams are working on: https://www.amazon.science/research-areas/conversational-ai-natural-language-processing
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a Masters student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a PhD student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for Masters or PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, and more! We are combining computer vision, mobile robots, advanced end-of-arm tooling and high-degree of freedom movement to solve real-world problems at huge scale. As an intern, you will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. You will own the design and development of end-to-end systems and have the opportunity to write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science