Philip Resnik, speaker at the ML Summit and a professor at the University of Maryland in the Department of Linguistics and at the Institute for Advanced Computer Studies
Philip Resnik, a professor at the University of Maryland in the Department of Linguistics and at the Institute for Advanced Computer Studies, is applying machine learning techniques to social media data in an attempt to make predictions about mental health.

3 questions with Philip Resnik: Analyzing social media to understand the risks of suicide

Resnik is a featured speaker at the first virtual Amazon Web Services Machine Learning Summit on June 2.

The first Amazon Web Services (AWS) Machine Learning Summit on June 2 will bring together customers, developers, and the science community to learn about advances in the practice of machine learning (ML). The event, which is free to attend, will feature four audience-focused tracks, including Science of Machine Learning.

Register for the free ML Summit

The goal of the summit is to bring together customers, developers, and the science community to learn about advances in machine learning. Click here to register.

The science track is focused on the data science and advanced practitioner audience, and will highlight the work AWS and Amazon scientists are doing to advance machine learning. The track will comprise six sessions, each lasting 30 minutes, and a 45-minute fireside chat.

In the coming weeks, Amazon Science will feature interviews with speakers from the Science of Machine Learning track. For the third edition of the series, we spoke to Philip Resnik, a professor at the University of Maryland in the Department of Linguistics and at the Institute for Advanced Computer Studies. Over the past three decades, Resnik’s work has focused on advancing the state of the art in natural language processing (NLP) by finding the right balance between data-driven computational modeling and expert domain knowledge.

Resnik received an Amazon Machine Learning Research Award (MLRA) in 2018 and 2019. Along with his colleagues, he is applying machine learning techniques to social media data in an attempt to make predictions about important aspects of mental health, with a focus on the problem of suicide risk.

Q. What is the subject of your talk going to be at the ML Summit?

I’ll be talking about using NLP and machine learning to tackle high-impact problems in mental health, particularly related to suicide. Many of us have had contact with someone suffering from mental health issues. However, we often lack an understanding of the true scope and scale of the problem.

Hear from two more ML Summit speakers

Michael Kearns talked about designing socially aware algorithms and models and Marzia Polito discussed how AWS customers are training and deploying computer vision models with a scarcity of data.

The global cost of mental health problems is right up there with cardiovascular disease, and the annual economic burden is more than the combined cost of cancer, diabetes, and respiratory diseases. Even before the pandemic, suicide was already a global tragedy in its own right. In the wake of COVID-19, there’s a worsening “echo pandemic” as people struggle with isolation, stress, and sustained disruptions in their day-to-day lives.

Q. Why is this topic especially relevant within the science community today?

Developing a nuanced understanding of language and the signal it contains is critical to mental healthcare. There are no blood tests for mental health problems. Even though brain imaging technology is improving rapidly, we can’t simply peer inside people’s heads and see the markers of mental illness.

Developing a nuanced understanding of language and the signal it contains is critical to mental healthcare.
Philip Resnik

However, language can provide an essential window into a person’s well-being. Mental health providers assess a patient’s condition in clinical interviews. Psychotherapy is also a language-based process. In the gaps between these clinical encounters, people’s everyday use of language can provide a crucial window into their experiences, behavior, and mental state. To use a term coined by Glen Coppersmith, there is an increasing quantity of language in that “clinical whitespace” now available online, and accessible in ways it hasn’t been before.

At the same time, human language is at the heart of the current machine learning revolution. Consider the most exciting developments in NLP and machine learning, like advances in our ability to represent meaning, make plausible inferences, discover patterns, and predict behavior. These are driven by the trifecta of the availability of text in enormous quantities, new computational ideas for utilizing this information, and computing power to apply those ideas at scale.

Improving mental health with data, natural language processing, and machine learning is a relevant and intriguing topic for the scientific community. It’s both an exciting problem space, and an underappreciated opportunity for technological research to translate into social good.

Q. What are some of the challenges in using NLP and machine learning to tackle high-impact problems in mental health?

One key challenge involves doing this work in ways that respect privacy.

The most meaningful progress in machine learning takes place when a large number of research teams explore different approaches to solving a problem using a common problem definition and a shared dataset.  However, mental health data — and data in healthcare more generally — is very sensitive, which makes that kind of community-level focus hard to accomplish.

To tackle this problem, I have adopted the idea of the data enclave: instead of sending datasets out to researchers, you bring the researchers to the data instead. The work takes place entirely within a secure infrastructure, and nothing leaves the platform without careful review.

As scientists and technologists, we’re not spending enough time asking the question, 'Then what?' We can’t just work on the technical aspects of the problem and expect other people to figure out the right way to use it.
Philip Resnik

I’ve been working with collaborators at NORC at the University of Chicago to develop the UMD/NORC Mental Health Data Enclave, a secure environment where researchers can deploy the full arsenal of NLP and machine learning techniques to make progress on problems involving sensitive mental health data.

Another challenge is that thinking about technology alone is not enough. Too often, as scientists and technologists, we’re not spending enough time asking the question, “Then what?” Even if the technology works wonderfully, how would we integrate it into the mental healthcare ecosystem in a way that is appropriately respectful of ethical issues, the practical considerations for providers, and the needs of patients?

We can’t just work on the technical aspects of the problem and expect other people to figure out the right way to use it. “Then what?” needs to be guiding our thinking from the very beginning. For this to happen, effective collaboration between technologists and mental health experts is a must.

You can learn about Resnik's research here, and watch his virtual talk at the virtual AWS Machine Learning Summit on June 2 by registering at the link below.

AWS Machine Learning Summit CTA
The summit is free to attend, features over 30 sessions, and includes a live Q&A.

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000