Line art of silicon chips developed by Annapurna Labs since its acquisition by Amazon in 2015.  Line art includes mentions of Graviton, Inferentia, and Trainium chips, along with AWS Nitro system.
Amazon's acquisition of Annapurna Labs in 2015 has led to, among other advancements, the development of five generations of the AWS Nitro system, three generations of Arm-based Graviton processors, as well as AWS Trainium and AWS Inferentia chips that are optimized for machine learning training and inference. These chips and systems were discussed at the AWS Silicon Innovation Day event on August 3. The event included a talk by Nafea Bshara, AWS vice president and distinguished engineer, on silicon innovation emerging from Annapurna Labs.

How silicon innovation became the ‘secret sauce’ behind AWS’s success

Nafea Bshara, AWS vice president and distinguished engineer, discusses Annapurna Lab’s path to silicon success; Annapurna co-founder was a featured speaker at AWS Silicon Innovation Day virtual event.

Nafea Bshara, Amazon Web Services vice president and distinguished engineer, and the co-founder of Annapurna Labs, an Israeli-based chipmaker that Amazon acquired in 2015, maintains a low profile, as does his friend and Annapurna co-founder, Hrvoye (Billy) Bilic.

Nafea Bshara headshot image
Nafea Bshara, AWS vice president and distinguished engineer.

Each executive’s LinkedIn profile is sparse, in fact, Bilic’s is out of date.

“We hardly do any interviews; our philosophy is to let our products do the talking,” explains Bshara.

Those products, and silicon innovations, have done a lot of talking since 2015, as the acquisition has led to, among other advancements, the development of five generations of the AWS Nitro System, three generations (1, 2, 3) of custom-designed, Arm-based Graviton processors that support data-intensive workloads, as well as AWS Trainium, and AWS Inferentia chips optimized for machine learning training and inference.

Some observers have described the silicon that emerges from Annapurna Labs in the U.S. and Israel as AWS’s “secret sauce”.

Nafea’s silicon journey began at Technion University in Israel, where he earned bachelor’s and master’s degrees in computer engineering, and where he first met Hrvoye. The two then went on to work for Israel-based Galileo, a company that made chips for networking switches, and controllers for networking routers. Galileo was acquired by U.S. semiconductor manufacturer Marvell in 2000, where Bshara and Bilic would work for a decade before deciding to venture out on their own.

“We had developed at least 50 different chips together,” Bshara explained, “so we had a track record and a first-hand understanding of customer needs, and the market dynamics. We could see that some market segments were being underserved, and with the support from our spouses, Lana and Liat, and our funding friends Avigdor [Willenz] and Manuel [Alba], we started Annapurna Labs.”

That was mid-2011, and three and half years later Amazon acquired the company. The two friends have continued their journey at Amazon, where their team’s work has spoken for itself.

Last year, industry analyst David Vellante praised AWS’s “revolution in system architecture.”

“Much in the same way that AWS defined the cloud operating model last decade, we believe it is once again leading in future systems. The secret sauce underpinning these innovations is specialized designs… We believe these moves position AWS to accommodate a diversity of workloads that span cloud, data center as well as the near and far edge.”

Annapurna’s work was highlighted during the AWS Silicon Innovation Day virtual event on August 3. In fact, Nafea was a featured speaker in the event. The Silicon Innovation Day broadcast, which highlighted AWS silicon innovations, included a keynote from David Brown, vice president, Amazon EC2; a talk about the history of AWS silicon innovation from James Hamilton, Amazon senior vice president and distinguished engineer who holds more than 200 patents in 22 countries in server and datacenter infrastructure, database, and cloud computing; and a fireside chat on the Nitro System with Anthony Liguori, AWS vice president and distinguished engineer, and Jeff Barr, AWS vice president and chief evangelist.

In advance of the silicon-innovation event, Amazon Science connected with Bshara to discuss the history of Annapurna, how the company and the industry have evolved in the past decade, and what the future portends.

  1. Q. 

    You co-founded Annapurna Labs just over 11 years ago. Why Annapurna?

    A. 

     I co-founded the company with my longtime partner, Billy, and with an amazing set of engineers and leaders who believed in the mission. We started Annapurna Labs because we looked at the way the chip industry was investing in infrastructure and data centers; it was minuscule at that time because everybody was going after the gold rush of mobile phones, smartphones, and tablets.

    We believed the industry was over indexing on investment for mobile, and under investing in the data center. The data center market was underserved. That, combined with the fact that there was increasing disappointment with the ineffective and non-productive method of developing chips, especially when compared with software development. The productivity of software developers had improved significantly in the past 25 years, while the productivity of chip developers hadn’t improved much since the ‘90s. In assessing the opportunity, we saw a data-center market that was being underserved, and an opportunity to redefine chip development with greater productivity, and with a better business model. Those factors contributed to us starting Annapurna Labs.

  2. Q. 

    How has the chip industry evolved in the past 11 years?

    A. 

    The chip industry realized, a bit late, but nevertheless realized that productivity and time to market needed to be addressed. While Annapurna has been a pioneer in advancing productivity and time to market, many others are following in our footsteps and transitioning to a building-blocks-centric development mindset, similar to how the software industry moved toward object-oriented, and service-oriented software design.

    Chip companies have now transitioned to what we refer to as an intellectual property-oriented, or IP-oriented, correct-by-design approach. Secondly, the chip industry has adopted the cloud. Cloud adoption has led to an explosion of compute power for building chips. Using the cloud, we are able to use compute in a ‘bursty’ way and in parallel. We and our chip-industry colleagues couldn’t deliver the silicon we do today without the cloud. This has led to the creation of a healthy market where chip companies have realized they don’t need to build everything in house, in much the same way software companies have realized they can buy libraries from open source or other library providers. The industry has matured to the point where now there is a healthy business model around buying building blocks, or IPs, from providers like Arm, Synopsys, Alphawave, or Cadence.

  3. Q. 

    Annapurna Labs was named after one of the tallest peaks in the Himalayas that’s regarded as one of the most dangerous mountains to climb. What's been the tallest peak you've had to climb?

    A. 

    I’m up in the cloud, I don’t need to climb anything [laughing]. Yes, Billy and I picked the name Annapurna Labs for a couple of reasons. First, Billy and I originally planned to climb Annapurna before we started the company. But then we got excited about the idea, acquired funding, and suddenly time was of the essence, so we put our climbing plans on hold and started the company. We called it Annapurna because at that time – and it’s true even today – there is a high barrier to entry in starting a chip company. The challenge is steep, and the risk is high, so it’s just like climbing Annapurna. We also believed that we wanted to reach a point above the clouds where you could see things very clearly, and without clutter. That’s always been a mantra for us as a company: Avoid the clutter, and look far into the future to understand what the customer really needs versus getting distracted by the day-to-day noise.

  4. Q. 

    What are the unique challenges you face in designing chips for ML training and inference versus more general CPU designs?

    A. 

    First, I would want to emphasize what challenge we didn’t have to worry about: with the strong foundation, methodologies, and engineering muscle we built delivering multiple generations of Nitro, we had confidence in our ability to execute on building the chips and manufacturing them at high volume, and high quality. So that was a major thing we didn’t need to worry about. Designing for machine learning is one the most challenging, but also the most rewarding tasks I've had the pleasure to participate in. There is an insatiable demand for machine learning right now, so anyone with a good product won’t have any issues finding customer demand. The demand is there, but there are a couple of challenges.

    Related content
    Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

    The first is that customers want ‘just works’ solutions because they have enough challenges to work on the science side. So they are looking for a frictionless migration from the incumbent, let's say GPU-based machine learning, to AWS Trainium or AWS Inferentia. Our biggest challenge is to hide all the complexity so it’s what we refer to internally as boring to migrate. We don’t want our customers, the scientists and researchers, to have to think about moving from one piece of hardware to another. This is a challenge because the incumbent GPUs, specifically NVIDIA, have done a very good job developing broadly adopted technologies. The customer shouldn’t see or experience any of the hard work we’ve done in developing our chips; what the customer should experience is that it’s transparent and frictionless to transition to Inferentia and Trainium. That’s a hefty task and one of our internal challenges as a team.

    Trainium artwork from AWS website
    "The customer shouldn’t see or experience any of the hard work we’ve done in developing our chips; what the customer should experience is that it’s transparent and frictionless to transition to Inferentia and Trainium," says Bshara.

    The second challenge is more external; it’s the fact that science and machine learning are moving very fast. As an organization that is building hardware, our job is to predict what customers will need three, four, five years down the road because the development cycle for a chip can be two years, and then it gets deployed for three years. The lifecycle is around five years and trying to predict how the needs of scientists and the machine-learning community will evolve over that time span is difficult. Unlike CPU workloads, which aren’t evolving very quickly, machine learning workloads are, and it’s a bit of an art to keep apace. I would give ourselves a high score, not a perfect score, in being efficient in terms of execution and cost, while still being future proof. It’s the art of predicting what customers will need three years from now, while still executing on time and budget. These things only come with experience, and I’m fortunate to be part of a great team that has the experience to strike the right balance between cost, schedule, and future-proofing the product.

  5. Q. 

    At the recent re:MARS conference Rohit Prasad, Amazon senior vice president and Alexa head scientist, said the voice assistant is interacting with customers billions of times each week. Alexa is powered by EC2 Inf1 instances, which use AWS Inferentia chips. Why is it more effective for Alexa workloads to take advantage of this kind of specialized processing versus more general-purpose GPUs?

    A. 

    Alexa is one of those Amazon technologies that we want to bring to as many people as possible. It’s also a great example of the Amazon flywheel; the more people use it, the more value it delivers. One of our goals is to provide this service with as low latency as possible, and at the lowest cost possible, and over time improve the machine-learning algorithms behind Alexa. When people say improving Alexa, it really means handling much more complex machine learning, much more sophisticated models while maintaining the performance, and low latency. Using Inferentia, the chip, and Inf1, the EC2 instances that actually hosts all of these chips, Alexa is able to run much more advanced machine learning algorithms at lower costs and with lower latency than a standard general-purpose chip. It's not that the general-purpose chip couldn't do the job, it's that it would do so at higher costs and higher latency. With Inferentia we deliver lower latency and support much more sophisticated algorithms. This results in customers having a better experience with Alexa, and benefitting from a smarter Alexa.

  6. Q. 

    AI has been called the new electricity. But as ML models become increasingly large and complex as you just discussed, there also are concerns that energy consumption for AI model training and inference is damaging to the environment. At the chip level, what can be done to reduce the environmental impact of ML model training and Inference?

    A. 

    What we can do at the chip level, at the EC2 level, is actually work on three vectors, which we’re doing right now. The first is drive to lower power quickly by using more advanced silicon processes. Every time we build a chip in an advanced silicon process we're utilizing new semiconductor processes with smaller transistors that require less power for the same work. Because of our focus on efficient execution, we can deliver to EC2 customers a new chip based on a more modern, power-efficient silicon process every 18 months or so.

    The second vector is building more technologies, trying to accelerate in hardware and in algorithms, to get training and inference done faster. The faster we can handle training and inference, the less power is consumed. For example, one of the technologies we innovated in the last Trainium chip was something called stochastic rounding which, depending upon which measure you're looking at for some neural workloads, could accelerate neural network training by up to 30%. When you say 30% less time that translates into 30% less power.

    Another thing we're doing at the algorithmic level is offering different data types. For example, historically machine learning used a 32-bit floating point. Now we’re offering multiple versions of 16-bit and a few versions of 8-bit. When these different data types are used, they not only accelerate machine learning training, they significantly reduce the power for the same amount of workload. For example, doing matrix multiplication on a 16-bit float point is less than one-third the total power if we had done it with 32-bit floating point. The ability to add things like stochastic rounding or new data types at the algorithmic level provides a step-function improvement in power consumption for the same amount of workload.

    The third vector is credit to EC2 and the Nitro System, we’re offering more choice for customers. There are different chips optimized for different workloads, and the best way for customers to save energy is to follow the classic Amazon mantra – the everything store. We offer all different types of chips, including multiple generations of Nvidia GPUs, Intel Habana, and Trainium, and share with the customer the power profile and performance of each of the instances hosting these chips, so the customer can choose the right chip for the right workload, and optimize for the lowest possible power consumption at the lowest cost.

  7. Q. 

    I’ve focused primarily on machine learning. But let’s turn our attention to more general-purpose workloads running in the cloud, and your work on Graviton processors for Amazon EC2. 

    A. 

    Yes, in a way Graviton is the opposite of our work on machine learning, in the sense that the focus is on building server processors for general-purpose workloads running in EC2. The market for general-purpose chips has been there for thirty or forty years, and the workloads themselves haven’t evolved as rapidly as machine learning, so when we started designing, the target was clear to us.

    This is an image of a Graviton silicon chip with a blue background.
    AWS is three generations into its Graviton chip journey, and Bshara says the company has plans for "many more generations" to come.

    Because this segment of the industry wasn’t moving that fast, we felt our challenge was to move the industry faster, specifically in offering step function improvement in performance, and reducing costs, and power consumption. There are many times when you build plans, especially for chips, where the original plans are rosy, but as the development progresses you have to make tradeoffs, and the actual product falls short of the original promise. With first-generation Graviton, we experienced the opposite; we were pleasantly surprised that both performance and power efficiency turned out better than our original plan. That’s very rare in our industry.

    Related content
    Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

    The same has been true with Graviton2. Because of this there has been a massive movement inside Amazon for general workloads to move to Graviton2, mainly to save on power, but also on costs. For the same workloads, Graviton2 will on average consume 60% less power than same-generation competitive offerings, and we’re passing on those cost-savings to customers. Outside Amazon, at least 48 of AWS’s top 50 customers have not just tested, but have production workloads running on Graviton2.

    In May, Graviton3 processors became available, so it’s still Day 1 as we’re only three generations into this journey. We have plans for many more generations, but it’s always very satisfying and rewarding to hear how boring it is for customers to migrate to Graviton, and to hear all the customer success stories. It is incredibly satisfying to come to work every day and hear some of the success stories from the tens of thousands of customers using Graviton.

  8. Q. 

    You have more than 100 openings on your jobs page. What kind of talent are you seeking? And what are the characteristics of employees who succeed at Annapurna Labs? 

    A. 

    We are seeking individuals who like to work on cutting-edge technology, and approach challenges from a principles-first approach because most of the challenges we confront haven’t been dealt with before. While actual experience is important, we place greater value on proper thinking and a principles-first mindset, or reasoning from first principles.

    We also value individuals who enjoy working in a dynamic environment where the solution isn’t always the same hammer after the same nail. Given our principles-first approach, many of our challenges get solved at the chip level, the terminal level, and the system level, so we seek individuals who have systems understanding, and are skilled at working across disciplines. It’s difficult for an individual with a single discipline, or single domain knowledge, who isn’t willing to challenge her or himself by learning across other domains, to succeed at Annapurna. Last but not least, we look for individuals who focus on delivering, within a team environment. We recognize ideas are “cheap”, and what makes the difference is delivering on the idea all the way to production. Ideas are a commodity. Executing on those ideas is not.

  9. Q. 

    I've read that Billy and you share the belief that if you can dream it, you can do it. So what's your dream about future silicon development?

    A. 

    That’s true, and it’s the main reason Billy and I wanted to join AWS, because we had a common vision that there’s so much value we can bring to customers, and AWS leadership and Amazon in general were willing to invest in that vision for the long term. We agreed to be acquired by Amazon not only because of the funding and our common long-term vision, but also because building components for our own data centers would allow us to quickly deliver customer value. We’ve been super happy with the relationship for many reasons, but primarily because of our ability to have customer impact at global scale.

    At Amazon, we operate at such a scale and with such a diversity of customers that we are capable of doing application-specific, or domain-specific acceleration. Machine learning is one example of that. What we’ve done with Aqua (advanced query accelerator) for Amazon Redshift is another example where we’ve delivered hardware-based acceleration for analytics. Our biggest challenge these days is deciding what project to prioritize. There’s no shortage of opportunities to deliver value. The only way we’re able to take this approach is because of AWS. Developing silicon requires significant investment, and the only way to gain a good return on that investment is by having a lot of volume and cost-effective development, and we’ve been able to develop a large, and successful customer base with AWS.

    I should also add that before joining Amazon we thought we really took a long-term perspective. But once you sit in Amazon meetings, you realize what long-term strategic thinking really means. I continue to learn every day about how to master that. Suffice to say, we have a product roadmap, and a technology and investment strategy that extends to 2032. As much uncertainty as there is in the future, there are a few things we’re highly convicted in, and we’re investing in them, even though they may be ten years out. I obviously can’t disclose future product plans, but we continue to dream big on behalf of our customers.

    The AWS Annapurna Labs team has more than 100 job openings for software developers, physical design engineers, design specification engineers, and many other technical roles. The team has development centers in the U.S. and Israel.

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
US, WA, Seattle
The Selling Partner Experience (SPX) organization strives to make Amazon the best place for Selling Partners to do business. The SPX Science team is building an AI-powered conversational assistant to transform the Selling Partner experience. The Selling Assistant is a trusted partner and a seasoned advisor that’s always available to enable our partners to thrive in Amazon’s stores. It takes away the cognitive load of selling on Amazon by providing a single interface to handle a diverse set of selling needs. The assistant always stays by the seller's side, talks to them in their language, enables them to capitalize on opportunities, and helps them accomplish their business goals with ease. It is powered by the state-of-the-art Generative AI, going beyond a typical chatbot to provide a personalized experience to sellers running real businesses, large and small. Do you want to join an innovative team of scientists, engineers, product and program managers who use the latest Generative AI and Machine Learning technologies to help Amazon create a delightful Selling Partner experience? Do you want to build solutions to real business problems by automatically understanding and addressing sellers’ challenges, needs and opportunities? Are you excited by the prospect of contributing to one of Amazon’s most strategic Generative AI initiatives? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities - Use state-of-the-art Machine Learning and Generative AI techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. - Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. - Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. - Establish scalable, efficient, automated processes for large scale data analyses, model benchmarking, model validation and model implementation. - Research and implement novel machine learning and statistical approaches. - Participate in strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. About the team Selling Partner Experience Science is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. We are focused on building seller facing AI-powered tools using the latest science advancements to empower sellers to drive the growth of their business. We strive to radically simplify the seller experience, lowering the cognitive burden of selling on Amazon by making it easy to accomplish critical tasks such as launching new products, understanding and complying with Amazon’s policies and taking actions to grow their business.
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Growth organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Senior Applied Scientist to lead us to identify data-driven insight and opportunities to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of scientists and engineers, you will solve complex problems to identify actionable opportunities, and collaborate with engineering, research, and business teams for future innovation. You need to have deep understanding on the business domain and have the ability to connect business with science. You are also strong in ML modeling and scientific foundation with the ability to collaborate with engineering to put models in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As a Sr. Applied Scientist in the team, you will: - Identify opportunities to improve SP growth and translate those opportunities into science problems via principled statistical solutions (e.g. ML, causal, RL). - Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in MLOps. - Design and lead roadmaps for complex science projects to help SP have a delightful selling experience while creating long term value for our shoppers. - Work with our engineering partners and draw upon your experience to meet latency and other system constraints. - Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. - Be responsible for communicating our science innovations to the broader internal & external scientific community.
US, CA, Sunnyvale
Our team leads the development and optimization of on-device ML models for Amazon's hardware products, including audio, vision, and multi-modal AI features. We work at the critical intersection of ML innovation and silicon design, ensuring AI capabilities can run efficiently on resource-constrained devices. Currently, we enable production ML models across multiple device families, including Echo, Ring/Blink, and other consumer devices. Our work directly impacts Amazon's customer experiences in consumer AI device market. The solutions we develop determine which AI features can be offered on-device versus requiring cloud connectivity, ultimately shaping product capabilities and customer experience across Amazon's hardware portfolio. This is a unique opportunity to shape the future of AI in consumer devices at unprecedented scale. You'll be at the forefront of developing industry-first model architectures and compression techniques that will power AI features across millions of Amazon devices worldwide. Your innovations will directly enable new AI features that enhance how customers interact with Amazon products every day. Come join our team! Key job responsibilities As a Principal Applied Scientist, you will: • Own the technical architecture and optimization strategy for ML models deployed across Amazon's device ecosystem, from existing to yet-to-be-shipped products. • Develop novel model architectures optimized for our custom silicon, establishing new methodologies for model compression and quantization. • Create an evaluation framework for model efficiency and implement multimodal optimization techniques that work across vision, language, and audio tasks. • Define technical standards for model deployment and drive research initiatives in model efficiency to guide future silicon designs. • Spend the majority of your time doing deep technical work - developing novel ML architectures, writing critical optimization code, and creating proof-of-concept implementations that demonstrate breakthrough efficiency gains. • Influence architecture decisions impacting future silicon generations, establish standards for model optimization, and mentor others in advanced ML techniques.