TheWebConf: Stable themes, new wrinkles

Amazon Scholar Eugene Agichtein on incorporating knowledge into natural-language-processing models, multimodal interactions, and more.

Famously, in 1998, the first research paper about Google’s ranking algorithm was turned down by more-established academic conferences on information retrieval before finding a home at the upstart World Wide Web Conference, which was only four years old at the time.

0022303-18AW
Eugene Agichtein, Amazon Scholar and Winship Professor of computer science at Emory University.
Credit: Ann Watson

“It was accepted to WWW because it was this new and emerging conference that was just taking cool ideas,” says Eugene Agichtein, an Amazon Scholar, the Winship Professor of computer science at Emory University, and a researcher whose 20-year involvement with the Web Conference included a stint as program committee co-chair in 2017. “It was accepting of new topics, and it moved faster and was more adaptable than traditional academic conferences. And it was more inclusive of industry work.”

This year, the formerly disruptive conference — now known as simply the Web Conference, nicknamed TheWebConf — receives another badge of mainstream acceptance, as it officially comes under the aegis of the Association for Computing Machinery.

“This year marks the historical transition of the conference series to ACM, the world’s largest scientific- and educational-computing society,” says Yoelle Maarek, the Amazon vice president for research and science at Alexa Shopping and a vice president of the conference’s new steering committee of the conference. “This definitely paints an even brighter future for the conference series.”

Related content
For Amazon’s Xin Luna Dong, the conference’s diversity mirrors that of her project: building the Amazon product knowledge graph.

“Five years ago” — the year in which Agichtein was program chair — “we had a record number of submissions to the conference,” Agichtein says. "Out of 966 submissions, 164 were accepted. This year, there were almost double the submissions from five years ago. There were 1,820 submissions, with, again, a 17% acceptance rate. The conference has just exploded, and it remains incredibly competitive.

“Because of the acceptance rate, a lot of potentially cool and exciting work doesn't get in. However, there are a lot of what they call alternate tracks for industry, for posters and demos, and for web development where a lot of these emerging topics get accepted. For example, e-sports and online gaming, which would be a struggle to evaluate in a regular academic conference — e-sports has a special track at the Web Conference this year.”

Shifts and trends

In just the five years since he served as program chair, Agichtein says, there have been some notable shifts in the distribution of research topics covered at the conference.

“One of the popular topics five years ago was crowdsourcing, investigating methodologies for large-scale human data collection for training and evaluating machine learning models,” he says. “But by now, it has become a mainstream method for creating training data for large models. Similarly, there is no longer a separate track for conversational systems, because conversational interfaces have become incorporated into the general search or recommendation system tracks.”

Related content
Scientists updated the system to accurately measure body fat percentage and create personalized 3D models even if there’s not enough room to take a full-body photo.

“In ’17, we introduced a new track to the Web Conference on computational health,” Agichtein adds, “and I was very happy to see that there are a lot of papers this year on health on the web, with different names, like web for good or web for society. Especially with the pandemic, the web has become central to health-related activities and research — tracking things like infection rates. It was interesting to see how much it took off.”

Glancing over the program of this year’s Web Conference, Agichtein notices a few pronounced trends.

“User modeling has been a central part of the web, and this year is no exception,” he says. “It's all about trying to personalize content, trying to model how people are interacting with the systems. I would say there are at least two dozen papers on representing users, building user models, and trying to personalize or present content to them. And security, privacy, and trust remain a critical issue.”

Knowledge and multimodality

One of the research trends that most intrigues Agichtein is the incorporation of both structured and unstructured knowledge and reasoning into natural-language-processing models for conversational information retrieval and recommendation systems.

“I can give you an example close to our work at Amazon,” he says. “In order to generate an informed response, a conversational agent needs to be able to detect when, how, and what knowledge to incorporate into a conversation in a coherent manner. For example, to recommend an item such as a movie, an agent needs to represent the conversation context and retrieve useful knowledge about the movie itself and, ideally, provide relevant information about what made this movie appropriate for the user.

Related content
Amazon’s George Karypis will give a keynote address on graph neural networks, a field in which “there is some fundamental theoretical stuff that we still need to understand.”

“There's been a wide variety of approaches to how to incorporate this knowledge, whether it's to incorporate it directly into the generative model by memorizing everything — storing it as part of the language model — or by retrieving knowledge from a variety of sources at runtime, which is the approach that we tend to favor.

“The new approaches will allow us to better select relevant knowledge or reason about which parts of the knowledge sources are helpful to include, because we have more capacity to capture the conversational context itself and more powerful models to pull in the knowledge needed to either generate a response or to select among possible responses or to understand what the user is trying to do.

“The other thing I have been studying is how users interact with information retrieval and conversational systems. Conversational interfaces have become ubiquitous, thanks to Alexa and others, but there's a completely open area on how those agents would interact with users in the real world, and in combination with other modalities such as screens and available sensors. So when we have responsive and potentially autonomous devices like Amazon’s Astro or other robots interacting with users in the real, physical environment, we need completely new models to represent the physical context of the interaction and to connect the content and the user’s gestures to what they refer to on the screen or in the real world.

“In this spirit, we have organized the Alexa Prize TaskBot Challenge, providing an opportunity for university teams to develop conversational-AI agents to assist users with cooking and home improvement tasks. The user modeling track at TheWebConf would be a perfect venue for that kind of work.

Related content
With a new machine learning system, Alexa can infer that an initial question implies a subsequent request.

“The research community has spent 20 years optimizing models to interpret user queries and result clicks on the web. Now we have much richer environments and interaction modalities. So you can imagine it'll take us another 20 years to really come up with accurate ways of interpreting user interactions with multimodal conversational systems embedded in the user’s space.”

For the most part, however, “the overall themes of TheWebConf have remained relatively stable for the last five years,” Agichtein says. “It's just that the diversity within each of the tracks has continued to increase. And it’s encouraging to continue to see strong representation of both academia and industry. That's the spirit in which the conference was founded.”

Related content

US, WA, Bellevue
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Diego
We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to tackle challenging problems across diverse compliance domains. We leverage and train state-of-the-art multi-modal and large-language-models (LLMs) to detect illegal and unsafe products across the Amazon catalog. We work on machine learning problems for multi-modal classification, intent detection, information retrieval, anomaly and fraud detection, and generative AI. This is an exciting and challenging position to deliver scientific innovations into production systems at Amazon-scale to make immediate, meaningful customer impacts while also pursuing ambitious, long-term research. You will work in a highly collaborative environment where you can analyze and process large amounts of image, text and tabular data. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. There will be something new to learn every day as we work in an environment with rapidly evolving regulations and adversarial actors looking to outwit your best ideas. Key job responsibilities • Design and evaluate state-of-the-art algorithms and approaches in multi-modal classification, large language models (LLMs), intent detection, information retrieval, anomaly and fraud detection, and generative AI • Translate product and CX requirements into measurable science problems and metrics. • Collaborate with product and tech partners and customers to validate hypothesis, drive adoption, and increase business impact • Key author in writing high quality scientific papers in internal and external peer-reviewed conferences. A day in the life - Understanding customer problems, project timelines, and team/project mechanisms - Proposing science formulations and brainstorming ideas with team to solve business problems - Writing code, and running experiments with re-usable science libraries - Reviewing labels and audit results with investigators and operations associates - Sharing science results with science, product and tech partners and customers - Writing science papers for submission to peer-review venues, and reviewing science papers from other scientists in the team. - Contributing to team retrospectives for continuous improvements - Driving science research collaborations and attending study groups with scientists across Amazon About the team We are a team of applied scientists building AI/ML solutions to make Amazon Earth’s most trusted shopping destination for safe and compliant products.
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.