Near-linear scaling of gigantic-model training on AWS

A new distributed-training library achieves near-linear efficiency in scaling from tens to hundreds of GPUs.

State-of-the-art language models have billions of parameters. Training these models within a manageable time requires distributing the workload across a large computing cluster. Ideally, training time would decrease linearly as the cluster size scales up. However, linear scaling is difficult to achieve because the communication required to coordinate the work of the cluster nodes eats into the gains from parallelization.

Related content
Amazon researchers optimize the distributed-training tool to run efficiently on the Elastic Fabric Adapter network interface.

Recently, we put some effort into optimizing the communication efficiency of Microsoft’s DeepSpeed distributed-training library, dramatically improving performance for up to 64 GPUs. However, when we scale from tens of GPUs to hundreds, in the public cloud environment, communication overhead again begins to overwhelm efficiency gains.

In a paper that we'll present in 2023 at the International Conference on Very Large Data Bases (VLDB), we propose a method to make model training scale efficiently on hundreds of GPUs in the cloud. We call this method MiCS, because it minimizes communication scale to bring down communication overhead.

Specifically, where existing distributed-training frameworks such as DeepSpeed and FairScale divide a model state across all GPUs, MiCS makes multiple replicas of the model state and partitions each replica within a subset of GPUs. Depending on the model size, a replica may fit on a single computing node — a single machine with high-speed connections between its GPUs — or on multiple nodes.

Thus, in MiCS, frequent communication operations, like parameter gathering, are restricted to a subset of GPUs. In this way, when we scale a cluster up — by adding new replicas across new nodes — the communication latency of frequent communication operations remains fixed, rather than growing with the size of the cluster.

We also reduce the data volume transmitted between nodes in the event that a copy of the model state won’t fit in a single node. Lastly, MiCS includes a gradient synchronization schedule that amortizes expensive gradient synchronization among all workers.

Our experimental results show significant improvement in throughput and scaling efficiency on different-sized BERT models evaluated on clusters consisting of p3dn.24xlarge instances. MiCS is able to achieve near-linear scalability (denoted by the rectangular frames in the figure below) and provides up to 2.82-fold throughput compared to the second and third states of the three-stage zero-redundancy optimizer, or ZeRO, the communication management method built into DeepSpeed-v0.5.6 .

We have also compared MiCS with our earlier optimizations of ZeRO’s third stage (see figure below), demonstrating improvements even at the lower GPU counts that we investigated previously. We report all these findings in greater detail in a preprint paper on the arXiv.

MiCS results.png
A comparison of MiCS and our earlier optimizations of DeepSpeed Zero’s third stage.

AWS P4d provides up to 400Gbps networking bandwidth for high-performance computing. Unfortunately, the distributed system may not be able to fully utilize 400Gbps efficiently because of communication overhead — especially latency, which increases when adding more GPUs to the cluster.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

We have deployed MiCS to train proprietary models with up to 175 billion parameters on p4d.24xlarge (40GB A100) and p4de.24xlarge (80GB A100) instances. When training a 175-billion-parameter model with a sequence length of 2,048 on 16 p4de.24xlarge instances, we are able to achieve 169-teraflops (54.2% of the theoretical peak) performance on each GPU. When we train a 100-billion-parameter model on 64 p4d.24xlarge instances (512 A100 GPUs), MiCS maintains over 170 teraflops per GPU (54.5% of the theoretical peak).

When the size of the cluster is scaled from 128 GPUs to 512 GPUs, MiCS achieves 99.4% of the linear-scaling efficiency (as measured by the “weak scaling” metric). In contrast, DeepSpeed ZeRO’s third stage achieves only 72% weak-scaling efficiency and saturates at 62 teraflops per GPU (19.9% of the theoretical peak).

Scale-aware model partitioning

By default, DeepSpeed partitions model states across all devices, a strategy that lowers the memory consumption on each GPU in the cluster but incurs large communication overhead in training. More importantly, the overhead scales up with the size of the cluster, which causes the scalability to drop significantly at large scale.

Instead of partitioning model states to all GPUs, MiCS divides GPUs in the cluster into multiple groups and partitions model states within each group. We call these groups partition groups. Each group holds a complete replica of model states. The following figure gives an example of partition groups consisting of two consecutive GPUs. Those GPUs holding the same part of the model state form another kind of group, a replication group.

Graphic shows the relationship between partition groups and replication groups in MiCS.
The relationship between partition groups and replication groups in MiCS.

Partitioning model states within each partition group restricts the most frequent communications, parameter gathering and gradient synchronization, within a fixed number of GPUs. This strategy effectively controls the communication overhead and does not let it grow with the size of the cluster.

Hierarchical communication strategy

When the memory requirement for a single replica of the model state is larger than the total amount of GPU memory in a single node, we need to store the replica on GPUs spanning multiple nodes. In that case, we have to rely on less-efficient internode communication.

Related content
Earlier this year, we reported a speech recognition system trained on a million hours of data, a feat possible through semi-supervised learning, in which training data is annotated by machines rather than by people. These sorts of massive machine learning projects are becoming more common, and they require distributing the training process across multiple processors. Otherwise, training becomes too time consuming.

The volume of transmitted data and the latency in a collective communication are determined by the message size and the number of participants. Particularly, the communication volume is proportional to (p - 1)/p, where p denotes the number of participants, and if the participants use the standard ring-shaped communication pattern, the latency has a linear dependency on the number of participants.

The message size cannot be reduced without compromising data integrity, but we can reduce the number of participants in internode communications. This lowers the communication volume factor to (p - k)/p and latency by p/(p/k + k) times, where k is the number of GPUs on a single node.

Consider the simple example below, involving two nodes with two GPUs each. The standard ring-shaped communication pattern would aggregate data across nodes (left) by passing messages from each GPU to the next, so a single internode communication involves four GPUs.

Internode communication.png
MiCS reduces the number of GPUs that participate in any given internode communication.

MiCS, by contrast, executes these internode operations in parallel, so each internode communication involves only two GPUs (right), which exchange only half the information that we want to communicate. Each node then aggregates the internode data locally to assemble the full message. In this case, the communication volume factor is reduced from ¾ ((4-1)/4) to ½ ((4-2/4).

Two-hop gradient synchronization

Synchronizing gradients among all workers is an expensive operation, required to keep workers working on the same model states. During the training of large neural nets, batch size is typically limited by GPU memory. Gradient accumulation is a technique that splits a batch of samples into several microbatches that will be run sequentially in multiple microsteps.

Related content
“Anytime query” approach adapts to the available resources.

With MiCS, we can accumulate gradients inside each partition group in multiple microbatches until the last microbatch is processed. That is, for each microstep, we can accumulate the full set of gradients for each model replica inside a subset of GPUs (i.e., a partition group). Then, after the last microbatch is handled, each GPU synchronizes gradients with the other GPUs representing the same part of the model state.

This allows us to amortize the synchronization overhead across replication groups to multiple microsteps. The following figure gives an example of two-hop gradient synchronization for training with four microsteps.

Gradient accumulation.png
Two-hop gradient synchronization.

Because of these three techniques, MiCS shows great scalability on large clusters and delivers excellent training throughput performance, and it enables us to achieve a new state-of-the-art performance on AWS p4de.24xlarge machines.

We are working to open-source MiCS for public use, in the belief that it will greatly reduce the time and cost of large-model training on the Amazon EC2 platform. Please refer to our preprint for a more detailed explanation of our system and analysis of its performance.

Acknowledgements: Yida Wang, Justin Chiu, Roshan Makhijani, RJ, Stephen Rawls, Xin Jin

Research areas

Related content

US, WA, Bellevue
The Artificial General Intelligent team (AGI) seeks an Applied Scientist with a strong background in machine learning and production level software engineering to spearhead the advancement and deployment of cutting-edge ML systems. As part of this team, you will collaborate with talented peers to create scalable solutions for an innovative conversational assistant, aiming to revolutionize user experiences for millions of Alexa customers. The ideal candidate possesses a solid understanding of machine learning fundamentals and has experience writing high quality software in production setting. The candidate is self-motivated, thrives in ambiguous and fast-paced environments, possess the drive to tackle complex challenges, and excel at swiftly delivering impactful solutions while iterating based on user feedback. Join us in our mission to redefine industry standards and provide unparalleled experiences for our customers. Key job responsibilities You will be expected to: · Analyze, understand, and model customer behavior and the customer experience based on large scale data · Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints · Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results · Build and deploy automated model training and evaluation pipelines · Perform model/data analysis and monitor metrics through online A/B testing · Research and implement novel machine learning and deep learning algorithms and models. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA
CA, ON, Toronto
Looking for your next challenge? North America Sort Centers (NASC) are experiencing growth and looking for a skilled, highly motivated Data Scientist to join the NASC Engineering Data, Product and Simulation Team. The Sort Center network is the critical Middle-Mile solution in the Amazon Transportation Services (ATS) group, linking Fulfillment Centers to the Last Mile. The experience of our customers is dependent on our ability to efficiently execute volume flow through the middle-mile network. Key job responsibilities The Data Scientist will design and implement solutions to address complex business questions using simulation. In this role, you will apply advanced analysis techniques and statistical concepts to draw insights from massive datasets, and create intuitive simulations and data visualizations. You can contribute to each layer of a data solution – you work closely with process design engineers, business intelligence engineers and technical product managers to obtain relevant datasets and create simulation models, and review key results with business leaders and stakeholders. Your work exhibits a balance between scientific validity and business practicality. On this team, you will have a large impact on the entire NASC organization, with lots of opportunity to learn and grow within the NASC Engineering team. This role will be the first dedicated simulation expert, so you will have an exceptional opportunity to define and drive vision for simulation best practices on our team. To be successful in this role, you must be able to turn ambiguous business questions into clearly defined problems, develop quantifiable metrics and deliver results that meet high standards of data quality, security, and privacy. About the team NASC Engineering’s Product and Analytics Team’s sole objective is to develop tools for under the roof simulation and optimization, supporting the needs of our internal and external stakeholders (i.e Process Design Engineering, NASC Engineering, ACES, Finance, Safety and Operations). We develop data science tools to evaluate what-if design and operations scenarios for new and existing sort centers to understand their robustness, stability, scalability, and cost-effectiveness. We conceptualize new data science solutions, using optimization and machine learning platforms, to analyze new and existing process, identify and reduce non-value added steps, and increase overall performance and rate. We work by interfacing with various functional teams to test and pilot new hardware/software solutions. We are open to hiring candidates to work out of one of the following locations: Toronto, ON, CAN
US, WA, Seattle
Join us at the cutting edge of Amazon's sustainability initiatives to work on environmental and social advancements to support Amazon's long term worldwide sustainability strategy. At Amazon, we're working to be the most customer-centric company on earth. To get there, we need exceptionally talented, bright, and driven people. The Worldwide Sustainability (WWS) organization capitalizes on Amazon’s scale & speed to build a more resilient and sustainable company. We manage our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation (SSI) is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise. We use this expertise and skills to identify, develop and evaluate the science and innovations necessary for Amazon, customers and partners to meet their long-term sustainability goals and commitments. We are seeking a Principal Applied Scientist who is not just adept in the theoretical aspects of Machine Learning (ML), Artificial Intelligence (AI), and Large Language Models (LLMs) but also possesses a pragmatic, hands-on approach to navigating the complexities of innovation. You will take the lead in conceptualization, building, and launching innovative models and solutions that significantly drive material impacts for our long-term sustainability and climate goals. You'll be guided by problems and customer needs. You'll use strong technical judgment to determine appropriate approaches - custom pre-training models, fine-tuning trusted base models, leveraging retrieval-augmented generation (RAGs), or combining approaches. You'll collaborate with business leaders, scientists, and engineers to incorporate sustainability domain nuances when creating data foundations, developing AI models/applications, and applying techniques like data indexing, validation metrics, model distillation, and customized loss functions. You'll work across teams to embed AI/ML solutions and capabilities into existing sustainability data and systems. You'll define key AI sustainability research directions, adopt/invent new ML techniques, conduct rigorous experiments, publish results, and ensure research translates into practice. You'll develop long-term strategies, persuade teams, propose goals and deliver. If you see yourself as a hands-on technical leader and innovator at the intersection of AI, technology, and sustainability, we'd like to connect. You don't need to be an expert in sustainability and climate domains. Key job responsibilities - Creating web-scale sustainability-specific data foundations that align with our impact areas and sustainability goals; - Models to measure environmental and economic impacts at scale; - Automated solutions simplifying complex, labor-intensive ESG tasks; reasoning mechanisms for multi-view decarbonization plans and multi-objective optimization models; - Models to create, monitor, and quality assure high-integrity forest carbon credits. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York City, NY, USA | San Francisco, CA, USA | Seattle, WA, USA
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Position We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to an Applied Science Manager. This position will be located in San Francisco. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA
US, CA, San Diego
The Private Brands team is looking for an Applied Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights. We are an interdisciplinary team of Scientists, Engineers, and Economists and primary focus on building optimization and machine learning solutions in supply chain domain with specific focus on Amazon private brand products. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in predictive and machine learning models and working with distributed systems. Academic and/or practical background in Machine Learning are particularly relevant for this position. Familiarity and experience in applying Operations Research techniques to supply chain problems is a plus. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | Seattle, WA, USA
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Applied Scientist, to support the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As an Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA | Sunnyvale, CA, USA
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Research Scientist with fabrication and data analysis experience working on Josephson Junction elements of a superconducting circuit. The position is on-site at our lab, located on the in Pasadena, CA. The ideal candidate will have had prior experience deep diving into fabrication details and electrical test data. We are looking for candidates with strong engineering principles, resourcefulness and data science experience. Organization and communication skills are essential. Key job responsibilities * Deep dive into the physics and related data associated with Josephson Junctions or metal-insulator-metal fabrication processes. * Develop and maintain data pipeline pertinent to superconducting device fabrication, in particular Josephson Junctions or general transmon elements. * Develop analytical tools to uncover new information about established and new junction processes. * Generate both custom and standardized reports summarizing inline and end of line electrical and process data from product material runs. * Devise experiments and provide recommendations for improvement of fabrication processes. * Communicate findings with colleagues by way of crisp documentation and presentations. A day in the life The role will be vital to the fabrication team and quantum computing device integration mechanism. The candidate will provide the most current information to project leads and fabrication area owners to drive data driven decision of production runs. Once the fabrication run starts the candidate will stay close to the details of fabrication providing data analysis and quick feedback to key stakeholders. At the end of fabrication runs custom and standardized reports will be generated by the candidate to provide insights into data generated from the run. This position may require occasional weekend work. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. About the team Our team is comprised of scientists and engineers who are building hardware that enables quantum computing technologies. Doing that requires the fabrication of quantum devices, which necessitates staying close to the details and analyzing data while building tools to better understand the data. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
US, CA, Sunnyvale
The Amazon Devices team designs and engineers high-profile consumer electronics, including the best-selling Kindle family of products. We have also produced groundbreaking devices like Fire tablets, Fire TV, Amazon Dash, and Amazon Echo. What will you help us create? Work hard. Have fun. Make history. If you are an innovative Applied Scientist, have a track record of delivering to timelines with high quality and are deeply technical, we want to talk to you. You will be closely integrated with the research and development team, both developing and optimizing features. You will work with other world-leading scientists to build and deliver the world's most scalable robotics systems, working together from ideation-to-production using tools such as Computer Vision Deep Learning instance segmentation, pose estimation, activity understanding), CV geometry, active learning and reinforcement learning. A successful candidate will have excellent technical ability, scientific vision, project management skills, great communication skills, and a motivation to achieve results in a collaborative team environment. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
GB, London
Amazon Advertising is looking for a Senior Applied Scientist to join its brand new initiative that powers Amazon’s contextual advertising product. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. We are looking for a dynamic, innovative and accomplished Senior Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML and Artificial General Intelligence based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. About the team The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are open to hiring candidates to work out of one of the following locations: London, GBR
ES, M, Madrid
At Amazon, we are committed to being the Earth’s most customer-centric company. The International Technology group (InTech) owns the enhancement and delivery of Amazon’s cutting-edge engineering to all the varied customers and cultures of the world. We do this through a combination of partnerships with other Amazon technical teams and our own innovative new projects. You will be joining the Tools and Machine learning (Tamale) team. As part of InTech, Tamale strives to solve complex catalog quality problems using challenging machine learning and data analysis solutions. You will be exposed to cutting edge big data and machine learning technologies, along to all Amazon catalog technology stack, and you'll be part of a key effort to improve our customers experience by tackling and preventing defects in items in Amazon's catalog. We are looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading machine learning solutions. We strongly value your hard work and obsession to solve complex problems on behalf of Amazon customers. Key job responsibilities We look for applied scientists who possess a wide variety of skills. As the successful applicant for this role, you will with work closely with your business partners to identify opportunities for innovation. You will apply machine learning solutions to automate manual processes, to scale existing systems and to improve catalog data quality, to name just a few. You will work with business leaders, scientists, and product managers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will be part of team of 5 scientists and 13 engineers working on solving data quality issues at scale. You will be able to influence the scientific roadmap of the team, setting the standards for scientific excellence. You will be working with state-of-the-art models, including image to text, LLMs and GenAI. Your work will improve the experience of millions of daily customers using Amazon in Europe and in other regions. You will have the chance to have great customer impact and continue growing in one of the most innovative companies in the world. You will learn a huge amount - and have a lot of fun - in the process! This position will be based in Madrid, Spain We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP