Near-linear scaling of gigantic-model training on AWS

A new distributed-training library achieves near-linear efficiency in scaling from tens to hundreds of GPUs.

State-of-the-art language models have billions of parameters. Training these models within a manageable time requires distributing the workload across a large computing cluster. Ideally, training time would decrease linearly as the cluster size scales up. However, linear scaling is difficult to achieve because the communication required to coordinate the work of the cluster nodes eats into the gains from parallelization.

Related content
Amazon researchers optimize the distributed-training tool to run efficiently on the Elastic Fabric Adapter network interface.

Recently, we put some effort into optimizing the communication efficiency of Microsoft’s DeepSpeed distributed-training library, dramatically improving performance for up to 64 GPUs. However, when we scale from tens of GPUs to hundreds, in the public cloud environment, communication overhead again begins to overwhelm efficiency gains.

In a paper that we'll present in 2023 at the International Conference on Very Large Data Bases (VLDB), we propose a method to make model training scale efficiently on hundreds of GPUs in the cloud. We call this method MiCS, because it minimizes communication scale to bring down communication overhead.

Specifically, where existing distributed-training frameworks such as DeepSpeed and FairScale divide a model state across all GPUs, MiCS makes multiple replicas of the model state and partitions each replica within a subset of GPUs. Depending on the model size, a replica may fit on a single computing node — a single machine with high-speed connections between its GPUs — or on multiple nodes.

Thus, in MiCS, frequent communication operations, like parameter gathering, are restricted to a subset of GPUs. In this way, when we scale a cluster up — by adding new replicas across new nodes — the communication latency of frequent communication operations remains fixed, rather than growing with the size of the cluster.

We also reduce the data volume transmitted between nodes in the event that a copy of the model state won’t fit in a single node. Lastly, MiCS includes a gradient synchronization schedule that amortizes expensive gradient synchronization among all workers.

Our experimental results show significant improvement in throughput and scaling efficiency on different-sized BERT models evaluated on clusters consisting of p3dn.24xlarge instances. MiCS is able to achieve near-linear scalability (denoted by the rectangular frames in the figure below) and provides up to 2.82-fold throughput compared to the second and third states of the three-stage zero-redundancy optimizer, or ZeRO, the communication management method built into DeepSpeed-v0.5.6 .

We have also compared MiCS with our earlier optimizations of ZeRO’s third stage (see figure below), demonstrating improvements even at the lower GPU counts that we investigated previously. We report all these findings in greater detail in a preprint paper on the arXiv.

MiCS results.png
A comparison of MiCS and our earlier optimizations of DeepSpeed Zero’s third stage.

AWS P4d provides up to 400Gbps networking bandwidth for high-performance computing. Unfortunately, the distributed system may not be able to fully utilize 400Gbps efficiently because of communication overhead — especially latency, which increases when adding more GPUs to the cluster.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

We have deployed MiCS to train proprietary models with up to 175 billion parameters on p4d.24xlarge (40GB A100) and p4de.24xlarge (80GB A100) instances. When training a 175-billion-parameter model with a sequence length of 2,048 on 16 p4de.24xlarge instances, we are able to achieve 169-teraflops (54.2% of the theoretical peak) performance on each GPU. When we train a 100-billion-parameter model on 64 p4d.24xlarge instances (512 A100 GPUs), MiCS maintains over 170 teraflops per GPU (54.5% of the theoretical peak).

When the size of the cluster is scaled from 128 GPUs to 512 GPUs, MiCS achieves 99.4% of the linear-scaling efficiency (as measured by the “weak scaling” metric). In contrast, DeepSpeed ZeRO’s third stage achieves only 72% weak-scaling efficiency and saturates at 62 teraflops per GPU (19.9% of the theoretical peak).

Scale-aware model partitioning

By default, DeepSpeed partitions model states across all devices, a strategy that lowers the memory consumption on each GPU in the cluster but incurs large communication overhead in training. More importantly, the overhead scales up with the size of the cluster, which causes the scalability to drop significantly at large scale.

Instead of partitioning model states to all GPUs, MiCS divides GPUs in the cluster into multiple groups and partitions model states within each group. We call these groups partition groups. Each group holds a complete replica of model states. The following figure gives an example of partition groups consisting of two consecutive GPUs. Those GPUs holding the same part of the model state form another kind of group, a replication group.

Graphic shows the relationship between partition groups and replication groups in MiCS.
The relationship between partition groups and replication groups in MiCS.

Partitioning model states within each partition group restricts the most frequent communications, parameter gathering and gradient synchronization, within a fixed number of GPUs. This strategy effectively controls the communication overhead and does not let it grow with the size of the cluster.

Hierarchical communication strategy

When the memory requirement for a single replica of the model state is larger than the total amount of GPU memory in a single node, we need to store the replica on GPUs spanning multiple nodes. In that case, we have to rely on less-efficient internode communication.

Related content
Earlier this year, we reported a speech recognition system trained on a million hours of data, a feat possible through semi-supervised learning, in which training data is annotated by machines rather than by people. These sorts of massive machine learning projects are becoming more common, and they require distributing the training process across multiple processors. Otherwise, training becomes too time consuming.

The volume of transmitted data and the latency in a collective communication are determined by the message size and the number of participants. Particularly, the communication volume is proportional to (p - 1)/p, where p denotes the number of participants, and if the participants use the standard ring-shaped communication pattern, the latency has a linear dependency on the number of participants.

The message size cannot be reduced without compromising data integrity, but we can reduce the number of participants in internode communications. This lowers the communication volume factor to (p - k)/p and latency by p/(p/k + k) times, where k is the number of GPUs on a single node.

Consider the simple example below, involving two nodes with two GPUs each. The standard ring-shaped communication pattern would aggregate data across nodes (left) by passing messages from each GPU to the next, so a single internode communication involves four GPUs.

Internode communication.png
MiCS reduces the number of GPUs that participate in any given internode communication.

MiCS, by contrast, executes these internode operations in parallel, so each internode communication involves only two GPUs (right), which exchange only half the information that we want to communicate. Each node then aggregates the internode data locally to assemble the full message. In this case, the communication volume factor is reduced from ¾ ((4-1)/4) to ½ ((4-2/4).

Two-hop gradient synchronization

Synchronizing gradients among all workers is an expensive operation, required to keep workers working on the same model states. During the training of large neural nets, batch size is typically limited by GPU memory. Gradient accumulation is a technique that splits a batch of samples into several microbatches that will be run sequentially in multiple microsteps.

Related content
“Anytime query” approach adapts to the available resources.

With MiCS, we can accumulate gradients inside each partition group in multiple microbatches until the last microbatch is processed. That is, for each microstep, we can accumulate the full set of gradients for each model replica inside a subset of GPUs (i.e., a partition group). Then, after the last microbatch is handled, each GPU synchronizes gradients with the other GPUs representing the same part of the model state.

This allows us to amortize the synchronization overhead across replication groups to multiple microsteps. The following figure gives an example of two-hop gradient synchronization for training with four microsteps.

Gradient accumulation.png
Two-hop gradient synchronization.

Because of these three techniques, MiCS shows great scalability on large clusters and delivers excellent training throughput performance, and it enables us to achieve a new state-of-the-art performance on AWS p4de.24xlarge machines.

We are working to open-source MiCS for public use, in the belief that it will greatly reduce the time and cost of large-model training on the Amazon EC2 platform. Please refer to our preprint for a more detailed explanation of our system and analysis of its performance.

Acknowledgements: Yida Wang, Justin Chiu, Roshan Makhijani, RJ, Stephen Rawls, Xin Jin

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.