Near-linear scaling of gigantic-model training on AWS

A new distributed-training library achieves near-linear efficiency in scaling from tens to hundreds of GPUs.

State-of-the-art language models have billions of parameters. Training these models within a manageable time requires distributing the workload across a large computing cluster. Ideally, training time would decrease linearly as the cluster size scales up. However, linear scaling is difficult to achieve because the communication required to coordinate the work of the cluster nodes eats into the gains from parallelization.

Related content
Amazon researchers optimize the distributed-training tool to run efficiently on the Elastic Fabric Adapter network interface.

Recently, we put some effort into optimizing the communication efficiency of Microsoft’s DeepSpeed distributed-training library, dramatically improving performance for up to 64 GPUs. However, when we scale from tens of GPUs to hundreds, in the public cloud environment, communication overhead again begins to overwhelm efficiency gains.

To make model training scale efficiently on hundreds of GPUs in the cloud, we propose MiCS, a method that minimizes communication scale to bring down communication overhead.

Specifically, where existing distributed-training frameworks such as DeepSpeed and FairScale divide a model state across all GPUs, MiCS makes multiple replicas of the model state and partitions each replica within a subset of GPUs. Depending on the model size, a replica may fit on a single computing node — a single machine with high-speed connections between its GPUs — or on multiple nodes.

Thus, in MiCS, frequent communication operations, like parameter gathering, are restricted to a subset of GPUs. In this way, when we scale a cluster up — by adding new replicas across new nodes — the communication latency of frequent communication operations remains fixed, rather than growing with the size of the cluster.

We also reduce the data volume transmitted between nodes in the event that a copy of the model state won’t fit in a single node. Lastly, MiCS includes a gradient synchronization schedule that amortizes expensive gradient synchronization among all workers.

Our experimental results show significant improvement in throughput and scaling efficiency on different-sized BERT models evaluated on clusters consisting of p3dn.24xlarge instances. MiCS is able to achieve near-linear scalability (denoted by the rectangular frames in the figure below) and provides up to 2.82-fold throughput compared to the second and third states of the three-stage zero-redundancy optimizer, or ZeRO, the communication management method built into DeepSpeed-v0.5.6 .

We have also compared MiCS with our earlier optimizations of ZeRO’s third stage (see figure below), demonstrating improvements even at the lower GPU counts that we investigated previously. We report all these findings in greater detail in a preprint paper on the arXiv.

MiCS results.png
A comparison of MiCS and our earlier optimizations of DeepSpeed Zero’s third stage.

AWS P4d provides up to 400Gbps networking bandwidth for high-performance computing. Unfortunately, the distributed system may not be able to fully utilize 400Gbps efficiently because of communication overhead — especially latency, which increases when adding more GPUs to the cluster.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

We have deployed MiCS to train proprietary models with up to 175 billion parameters on p4d.24xlarge (40GB A100) and p4de.24xlarge (80GB A100) instances. When training a 175-billion-parameter model with a sequence length of 2,048 on 16 p4de.24xlarge instances, we are able to achieve 169-teraflops (54.2% of the theoretical peak) performance on each GPU. When we train a 100-billion-parameter model on 64 p4d.24xlarge instances (512 A100 GPUs), MiCS maintains over 170 teraflops per GPU (54.5% of the theoretical peak).

When the size of the cluster is scaled from 128 GPUs to 512 GPUs, MiCS achieves 99.4% of the linear-scaling efficiency (as measured by the “weak scaling” metric). In contrast, DeepSpeed ZeRO’s third stage achieves only 72% weak-scaling efficiency and saturates at 62 teraflops per GPU (19.9% of the theoretical peak).

Scale-aware model partitioning

By default, DeepSpeed partitions model states across all devices, a strategy that lowers the memory consumption on each GPU in the cluster but incurs large communication overhead in training. More importantly, the overhead scales up with the size of the cluster, which causes the scalability to drop significantly at large scale.

Instead of partitioning model states to all GPUs, MiCS divides GPUs in the cluster into multiple groups and partitions model states within each group. We call these groups partition groups. Each group holds a complete replica of model states. The following figure gives an example of partition groups consisting of two consecutive GPUs. Those GPUs holding the same part of the model state form another kind of group, a replication group.

Graphic shows the relationship between partition groups and replication groups in MiCS.
The relationship between partition groups and replication groups in MiCS.

Partitioning model states within each partition group restricts the most frequent communications, parameter gathering and gradient synchronization, within a fixed number of GPUs. This strategy effectively controls the communication overhead and does not let it grow with the size of the cluster.

Hierarchical communication strategy

When the memory requirement for a single replica of the model state is larger than the total amount of GPU memory in a single node, we need to store the replica on GPUs spanning multiple nodes. In that case, we have to rely on less-efficient internode communication.

Related content
Earlier this year, we reported a speech recognition system trained on a million hours of data, a feat possible through semi-supervised learning, in which training data is annotated by machines rather than by people. These sorts of massive machine learning projects are becoming more common, and they require distributing the training process across multiple processors. Otherwise, training becomes too time consuming.

The volume of transmitted data and the latency in a collective communication are determined by the message size and the number of participants. Particularly, the communication volume is proportional to (p - 1)/p, where p denotes the number of participants, and if the participants use the standard ring-shaped communication pattern, the latency has a linear dependency on the number of participants.

The message size cannot be reduced without compromising data integrity, but we can reduce the number of participants in internode communications. This lowers the communication volume factor to (p - k)/p and latency by p/(p/k + k) times, where k is the number of GPUs on a single node.

Consider the simple example below, involving two nodes with two GPUs each. The standard ring-shaped communication pattern would aggregate data across nodes (left) by passing messages from each GPU to the next, so a single internode communication involves four GPUs.

Internode communication.png
MiCS reduces the number of GPUs that participate in any given internode communication.

MiCS, by contrast, executes these internode operations in parallel, so each internode communication involves only two GPUs (right), which exchange only half the information that we want to communicate. Each node then aggregates the internode data locally to assemble the full message. In this case, the communication volume factor is reduced from ¾ ((4-1)/4) to ½ ((4-2/4).

Two-hop gradient synchronization

Synchronizing gradients among all workers is an expensive operation, required to keep workers working on the same model states. During the training of large neural nets, batch size is typically limited by GPU memory. Gradient accumulation is a technique that splits a batch of samples into several microbatches that will be run sequentially in multiple microsteps.

Related content
“Anytime query” approach adapts to the available resources.

With MiCS, we can accumulate gradients inside each partition group in multiple microbatches until the last microbatch is processed. That is, for each microstep, we can accumulate the full set of gradients for each model replica inside a subset of GPUs (i.e., a partition group). Then, after the last microbatch is handled, each GPU synchronizes gradients with the other GPUs representing the same part of the model state.

This allows us to amortize the synchronization overhead across replication groups to multiple microsteps. The following figure gives an example of two-hop gradient synchronization for training with four microsteps.

Gradient accumulation.png
Two-hop gradient synchronization.

Because of these three techniques, MiCS shows great scalability on large clusters and delivers excellent training throughput performance, and it enables us to achieve a new state-of-the-art performance on AWS p4de.24xlarge machines.

We are working to open-source MiCS for public use, in the belief that it will greatly reduce the time and cost of large-model training on the Amazon EC2 platform. Please refer to our preprint for a more detailed explanation of our system and analysis of its performance.

Acknowledgements: Yida Wang, Justin Chiu, Roshan Makhijani, RJ, Stephen Rawls

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York City
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
CN, 31, Shanghai
Job summaryAmazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced groundbreaking devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?The Role:You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness.Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques.In this role, you will:Evaluate and optimize thermal solution requirements of handheld consumer electronic productsUse simulation tools like FloTherm XT/EFD for analysis and design of productsValidate design modifications for thermal concerns using simulation and actual prototypesEstablish temperature thresholds for user comfort level and component level considering reliability requirementsHave intimate knowledge of various materials and heat spreaders solutions to resolve thermal issuesUse of programming languages like Python and Matlab for analytical/statistical analyses and automationCollaborate as part of device team to iterate and optimize design parameters of enclosures and structural parts to establish and deliver project performance objectivesDesign and execute of tests using statistical tools to validate analytical models, identify risks and assess design marginsConduct design analysis of complex mechanical systems and electronic assemblies to verify the design health, using structural analysis tools such as FEADevelop and apply design guidelines based on project learnings
US, WA, Seattle
Job summaryAt Amazon's Alexa Web Info, our vision is to delight customers by answering questions they ask Alexa on any device or any language by leveraging the power of web. Alexa is changing the world and specifically how customers engage with AI. We are a tight night growing team in Alexa AI and we are creating a compelling business. We are seeking an innovative and technically strong data scientist with a track record of surfacing actionable insights from our data. To be successful in this role, you have a strong passion for analytics and accountability, set high standards with a focus on superior business outcome. You should also have strong business acumen who feels comfortable tackling ambiguous business problems in dynamic business environment. Your decision will influence VP and Director level product and business decisions that directly impact product roadmap and customer experience.Key job responsibilitiesThe successful candidate will have a strong quantitative background and can thrive in an environment that leverages statistics, machine learning, data science, and strong business acumen. As a Senior Data Scientist, you will discover and solve real world problems by analyzing one of the world’s largest datasets, developing statistical and machine learning models to drive business decisions, leading science research and development roadmap. You will also collaborate closely with business leaders, software engineers, and scientists. You will function as the tech lead of the team, setting the best practices for delivering high quality data science projects, influencing analytics roadmap, setting best practices, and providing guidance to the junior scientists.You will work on high visibility and high business impact problems. You will spend time formulating and defining science problem based on business requirements.You will translate business problems into analytical framework and form testing hypotheses that can be answered with available data using scientific methods or identify additional data needed in the master datasets to fill any gapsYou have real-world experience solving medium to large sized statistical and machine learning projects. You will work on a diverse set of analytics problems, such as user growth, pricing, forecasting, causal inference, marketing research, experimentation, and other machine learning problems
US, MA, Boston
Job summaryJoin us in building innovative services that protect AWS from security threats! As an Amazon Security Applied Scientist, you’ll help build and manage services that detect and automate the mitigation of cybersecurity threats across Amazon’s infrastructure. You’ll work with security engineers, software development engineers, and other scientists across multiple teams to develop innovative security solutions at massive scale. Our services protect the AWS cloud for all customers and preserve our customers’ trust in us. You’ll get to use the full power and breadth of AWS technologies to build services that proactively protect every single AWS customer, both internally and externally, from security threats – not many teams can say that!Our team is dedicated to supporting new team members. The team has a mix of experience levels, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior engineers, scientists, and managers truly enjoy mentoring junior engineers, junior scientists, and engineers from non-traditional backgrounds through one-on-one mentoring and code reviews.We care about your career growth. We assign projects and tasks based on what will help team members develop into more well-rounded scientists and enable them to take on more complex tasks in the future.Our team is intentional about attracting, developing, and retaining amazing talent from diverse backgrounds. Yes, we do get to build a cool service, but we also believe a big reason for that is the inclusive and welcoming culture we cultivate every day.We’re looking for a new teammate who is enthusiastic, empathetic, curious, motivated, reliable, and able to work effectively with a diverse team of peers. We want someone who will help us amplify the positive & inclusive team culture we’ve been building.About UsHere at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future.