Making Alexa more friction-free

Friction is any variable that impedes your progress toward a goal, whether it’s purchasing a product or navigating traffic to make your 9 a.m. meeting on time.

Amazon is obsessively focused on reducing or eliminating friction – think one-click ordering, Amazon Prime, or Amazon Go.

This morning, I am delivering a keynote talk at the World Wide Web Conference in Lyon, France, with the title, Conversational AI for Interacting with the Digital and Physical World. In my presentation, I’ll emphasize that while today’s computers are currently optimized to provide audiovisual output and receive tactile and motor skill input, we are on the cusp of voice becoming the primary input. This is significant as we evolve to a world of ambient computing, where we are surrounded at home, work and on the go by devices with internet connectivity and the ability to interact with cloud-based services via natural language understanding. Our goal is to enable more natural interaction with all of these IOT devices, and for these devices to more proactively engage with us.

The mobile computing era provides many benefits; we all wouldn’t be tethered to our phones if it didn’t. But when you think about it, what’s changed primarily with the phone is the form factor; the screen is smaller but we interact with our phones much the same way we do our PCs. It’s great to have a computing device where ever we go, yet we are still attached to a screen, touching, typing and swiping. With voice, you’re truly mobile. I’m often in the kitchen cooking, cleaning or putting groceries in the fridge, and without diverting my attention I can ask Alexa to play a song, or provide a weather update. Rarely am I looking directly at my Echo device when I ask a question, or make a request. In a sense, voice-enabled devices set me free. The profound difference in this emerging era is that with the benefit of AI and machine-learning technologies, Alexa and similar services can learn about you, and conform to your needs, instead of you having to conform to the system’s interaction model.

Alexa is similar to any other Amazon service. It is about removing friction in our customers’ interactions with the physical and digital world. The Alexa Brain initiative, which I lead, is one of many within the Alexa organization focused on making Alexa smarter and more natural to engage with. Our goals are to make it easier for users to discover and interact with the more than 40,000 third-party skills that developers have created for Alexa, and to improve Alexa’s ability to track context and memory within and across dialog sessions.

In my talk today, I’ll be updating conference goers on our progress against these goals, and outline the challenges that still exist in making interaction with Alexa more natural. I’ll also be highlighting three new capabilities we’ll soon make available to our customers.

Skills arbitration

We are always looking for ways to make it easier for customers to find and engage with skills. One of our approaches to this is the ability for Alexa to dynamically arbitrate among skills using machine learning. In the coming weeks, we’re rolling out this new capability that allows customers in the U.S. to automatically discover, enable and launch skills using natural phrases and requests. For example, using an Echo Show device, I recently asked: “Alexa, how do I remove an oil stain from my shirt?” She replied: “Here is Tide Stain Remover.” This beta experience was friction-free; the skill just walked me through the process of removing an oil stain from my shirt. Previously, I would have had to discover the skill on my own to use it. This is just one example, but it gives you a sense for how this capability will provide customers frictionless direct access to, and interaction with, third-party skills. We’re excited about what we’ve learned from our early beta users and will gradually make this capability available to more skills and customers in the U.S.

Context carryover

Soon, we will improve our understanding of multi-turn utterances, or what we refer to as context carryover. Initially, we will make this capability available to all of our customers in the U.S., U.K., and Germany. Previously, we’ve supported two-turn interactions with explicit pronoun references. For example, “Alexa, what was Adele’s first album?” “Alexa, play it.” We are expanding beyond this to include utterances without pronouns. For example: “Alexa, how is the weather in Seattle?” → “What about this weekend?” We are also supporting context across domains. For example: “Alexa, how’s the weather in Portland?” → “How long does it take to get there?” We are providing this more natural way of engaging with Alexa by adding deep learning models to our spoken language understanding (SLU) pipeline that allows us to carry customers’ intent and entities within and across domains (i.e., between weather and traffic).

Memory

In the U.S, we also soon will begin to roll out a new memory feature. With this capability, Alexa can remember any information for you so that you never forget. Alexa can store arbitrary information you want and retrieve it later. For example, a customer might ask: “Alexa, remember that Sean’s birthday is June 20th.” Alexa will reply: “Okay, I’ll remember that Sean’s birthday is June 20th.” This memory feature is the first of many launches this year that will make Alexa more personalized. It's early days, but with this initial release we will make it easier for customers to save information, as well as provide a natural way to recall that information later.

The challenges ahead

The work of our science and engineering teams to make Alexa smarter and more engaging has been extraordinary. It requires significant changes to Alexa’s existing architecture and incorporates contextual cues and customer preferences across all components of our system.

We have many challenges still to address, such as how to scale these new experiences across languages and different devices, how to scale skill arbitration across the tens of thousands of Alexa skills, and how to measure experience quality. Additionally, there are component-level technology challenges that span automatic speech recognition, spoken language understanding, dialog management, natural language generation, text-to-speech synthesis, and personalization.

As Rohit Prasad, vice president and head scientist of the Alexa Machine Learning team, said in a recent interview, we’ve only begun to scratch the surface of what’s possible. Skills arbitration, context carryover and the memory feature are early instances of a class of work Amazon scientists and engineers are doing to make engaging with Alexa more friction-free. We’re on a multi-year journey to fundamentally change human-computer interaction, and as we like to say at Amazon, it’s still Day 1.

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person.Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel.CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000