Machine-labeled data + artificial noise = better speech recognition

Although deep neural networks have enabled accurate large-vocabulary speech recognition, training them requires thousands of hours of transcribed data, which is time-consuming and expensive to collect. So Amazon scientists have been investigating techniques that will let Alexa learn with minimal human involvement, techniques that fall in the categories of unsupervised and semi-supervised learning.

At this year’s International Conference on Acoustics, Speech, and Signal Processing, my colleagues and I are presenting a semi-supervised-learning approach to improving speech recognition performance — especially in noisy environments, where existing systems can still struggle.

We first train a speech recognizer — the “teacher” model — on 800 hours of annotated data and use it to “softly” label another 7,200 hours of unannotated data. Then we artificially add noise to the same dataset and use that, together with the labels generated by the teacher model, to train a second speech recognizer — the “student” model. We hope to make the behavior of the student model in the noisy domain approach that of the teacher model in the clean domain, and thus improve the noise robustness of the speech recognition system.

T-S_architecture.jpg._CB467865187_.jpg
The architecture of our teacher-student model. "Logits selection" refers to the selection of high-confidence senones.

On test data that we produced by simultaneously playing recorded speech and media sounds through loudspeakers and re-recording the combined acoustic signal, our system shows a 20% relative reduction in terms of word error rate versus a system trained only on the clean, annotated data.

An automatic speech recognition system has three main components: an acoustic model, a pronunciation model, and a language model. The inputs to the acoustic model are short snippets of audio called frames. For every input frame, the output is thousands of probabilities. Each probability indicates the likelihood that the frame belongs to a low-level phonetic representation called a senone.

In training the student model, we keep only the highest-confidence senones from the teacher, which turns out to be a quite effective approach.

The outputs of the acoustic model pass to the pronunciation model, which converts senone sequences into possible words, and those pass to the language model, which encodes the probabilities of word sequences. All three components of the system work together to find the most likely word sequence given the audio input.

Both our teacher and student models are acoustic models, and we experiment with two criteria for optimizing them. With the first, the models are optimized to maximize accuracy on a frame-by-frame basis, at the level of the acoustic model. The other training criterion is sequence-discriminative: both the teacher and student models are further optimized to minimize error across sequences of outputs, at the levels of not only the acoustic model but the pronunciation model and language model as well.

We find that sequence training makes the teacher models more accurate, apart from the performance of the student models. It also slightly increases the relative improvement offered by the student models.

To add noise to the training data, we used a collection of noise samples, most of which involved media playback — such as music or television audio — in the background. For each speech example in the training set, we randomly selected one to three noise samples to add to it. Those samples were processed to simulate closed-room acoustics, with the properties of the simulated room varying randomly from one training example to the next.

For every frame of audio data that passes to an acoustic model, most of the output probabilities are extremely low. So when we use the teacher’s output to train the student, we keep only the highest probabilities. We experimented with different numbers of target probabilities, from five to 40.

Intriguingly, this modification by itself improved the performance of the student model relative to the teacher, even on clean test data. Training the student to ignore improbable hypotheses enabled it to devote more resources to distinguishing among probable ones.

In addition to limiting the number of target probabilities, we also applied a smoothing function to them, which evened them out somewhat, boosting the lows and trimming the highs. The degree of smoothing is defined by a quantity called temperature. We found that a temperature of 2, together with keeping the 20 top probabilities, yielded the best results.

Apart from the data set produced by re-recording overlapping audio, we used two other data sets to test our system. One was a set of clean audio samples, and the other was a set of samples to which we’d added noise through the same procedure we used to create the training data.

Our best-performing student model was first optimized according to the per-frame output from the teacher model, using the entire 8,000 hours of data with noise added, then sequence-trained on the 800 hours of annotated data. Relative to a teacher model sequence-trained on 800 hours of hand-labeled clean data, it yielded a 10% decrease in error rate on the clean test data, a 29% decrease on the noisy test data, and a 20% decrease on the re-recorded noisy data.

Acknowledgments: Ladislav Mosner, Anirudh Raju, Sree Hari Krishnan Parthasarathi, Kenichi Kumatani, Shiva Sundaram, Roland Maas, Björn Hoffmeister

Related content

US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, the Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide.
JP, Tokyo
The Amazon Logistics (AMZL) Team is responsible for the acquisition, design, construction, and management of all facilities in the Amazon Delivery Station Network. AMZL is looking for a talented and passionate Data Scientist to help shape its Last Mile business with technical strategies and solutions, by processing, analyzing and interpreting huge data sets. You should be comfortable with ambiguity, problem solving and enjoy working in a fast-paced, diverse and dynamic environment. Using analytical rigor and statistical methods, you mine through data to identify opportunities for Amazon and our delivery channels. And you collaborate with other scientists, engineers, Product and Program Managers to deploy new products and solutions. [More Information] Last Mile Department Data Analyst/BI Engineer Tokyo Office *Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, visit https://www.amazon.jobs/disability/jp Key job responsibilities Creating a roadmap of the most challenging business questions and use data to articulate possible root cause analysis and solutions Managing and executing entire projects or components of large projects from start to finish including project management, data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights Partnering with Product, Program and Engineering teams to design and run models, research new algorithms, and prove incrementality and drive growth Understanding drivers, impacts, and key influences on seller growth dynamics Developing and scaling end-to-end ML Models and solutions Automating feedback loops for algorithms in production Utilizing Amazon systems and tools to effectively work with terabytes of data About the team Last Mile Execution Analytics (LMEA) team of JP works as an integral part of Amazon Logistics to ensure that its business intelligence, analytics, tools and planning needs are met. By providing information, insight, and decision support, we strive to enable success of all parts of AMZL. Our customer set includes senior management, station operations, external vendors, long-term planning, Ops technology (Voice of the Delivery Station, Voice of the Customer), network planning, and pretty much every BI and Ops teams. Voice of Employee [Work Life Harmony] We believe, it is important to spend private time such as spending time with your family or doing anything you like to spur innovation. Amazon promotes a fulfilling and flexible work style according to the work volume and lifestyle of each employee.
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables