Generalizing diffusion modeling to multimodal, multitask settings

A novel loss function and a way to aggregate multimodal input data are key to dramatic improvements on some test data.

One of the lessons of the machine learning revolution has been that, perhaps counterintuitively, training a model on multiple data types or multiple tasks can improve performance relative to single-purpose models. A model trained on multiple languages, for instance, can learn distinctions that are subtle in one language but pronounced in another, and a model trained on, say, object segmentation may learn properties of visual scenes that help it with depth perception.

Related content
First model to work across a wide range of products uses a second U-Net encoder to capture fine-grained product details.

The advantages of multitask and multimodal training, however, are relatively unexplored in the context of diffusion models, which are responsible for some of the most impressive recent results in generative AI. Diffusion models are trained to incrementally denoise samples to which noise has been incrementally added. The result is that feeding them random noisy inputs will yield randomized outputs that are semantically coherent.

In a paper we presented at the International Conference on Learning Representations (ICLR), we describe a general approach to building multimodal, multitask diffusion models. On the input side, we use modality-specific encoders to map data to a shared diffusion space; on the output side, we use multiple task-specific decoders to map general representations to specific outputs.

MM:MT diffusion architecture.png
The architecture of the multimodal, multitask diffusion model.

The paper presents a theoretical analysis of the problem of generalizing diffusion models to the multimodal, multitask setting, and on the basis of that analysis, it proposes several modifications of the loss function typically used for diffusion modeling. In experiments, we tested our approach on four different multimodal or multitask data sets, and across the board, it was able to match or improve performance relative to single-purpose models.

Minding modality

In the standard diffusion modeling scenario, the model’s encoder maps inputs to a representational space; within that space, a forward process iteratively adds noise to the input representation, and a reverse process iteratively removes it.

Related content
Diffusion modeling within the representational space of a variational autoencoder enables state-of-the-art results.

The loss function includes two terms that measure the distance between the probability distribution of the forward process and the learned probability distribution of the reverse process. One term compares the marginal distributions for the two processes in the forward direction: that is, it compares the likelihoods that any given noisy representation will occur during the forward process. The other term compares the posterior representations of the reverse process — that is, the likelihood that a given representation at time t-1 preceded the representation at time t. We modify these terms so that the distributions are conditioned on the modality of the data — that is, the distributions can differ for data of different modalities.

Both of these loss terms operate in the representational space: they consider the likelihood of a particular representation given another representation. But we also have a term in the loss function that looks at the probability that an input of a given modality led to a particular representation. This helps ensure that the reverse process will correctly recover the modality of the data.

MM:MT diffusion loss.png
The loss function for the multimodal-, multitask diffusion model is the sum of four sublosses, L0–L3. L0 compares the noise distributions of the forward and reverse processes, conditioned on the input data (X). L1 compares posterior distributions, also conditioned on the input data. L2 is the new term in our setting, which induces the model to recover input modalities.

Multimodal means

To fuse the multimodal information used to train the model, we consider the transition distribution in the forward direction, which determines how much noise to add to a given data representation. To compute the mean of that distribution, we define a weighted average of the multimodal input encodings, where the weights are based on input modality.

The transition probability of the forward process. The probability of z sub t, conditioned on z sub t minus 1 and X (the input data) is set equal to a normal distribution whose mean is defined by z sub t minus 1 plus the weighted sum of the encodings of the inputs, sorted by modality. The variance is 1 minus a fraction consisting of a time-varying weight over N (the number of different modalities) plus 1.
The equation for computing the mean and variance of the transition probability of the forward process in the multimodal, multitask setting. N is the number of modalities; wt(i) are the weights assigned to different modalities; xi is the input data; and Ei is the input encoder.

On the basis of the transition probabilities of the forward process, we can now compute the marginal distributions of noisy representations and the posterior distributions of the reverse process (corresponding to sublosses L0 and L1 in the loss function):

The equation for the marginal distribution. The probability of z sub t, conditioned on z sub zero and X (the input data), is set equal to the normal distribution whose mean is the sum of z sub zero (with a coefficient) and a weighted sum of input encoding, sorted by modality. The variance includes a time-varying term (1 minus a time-varying variable), which increases the noise at each time step.
The marginal distribution for the noisy representation zt in the multitask setting (corresponding to subloss L0, above).
The equation for the posterior mean includes a noisy data representation (z sub t), modified by constant factors, from which is subtracted t weighted sum of the encodings of input data of different modalities  (E sub i of x sub i).
The equation for the mean of the posterior distribution, in the multitask setting.

Evaluation

We tested our approach on four tasks, two of which were multitask, and two of which were multimodal. The multitask experiments were both in the vision domain: one involved jointly generating visual data and the associated segmentation masks, and the other was a novel multitask pretraining task in which a diffusion generation model also learned fill in masked regions of input images.

Related content
Generative AI supports the creation, at scale, of complex, realistic driving scenarios that can be directed to specific locations and environments.

The multimodal experiments involved images and other modalities. In one, the model was trained to jointly generate images and their labels, and in the other, the model learned to jointly generate images and their embeddings in a representational space — for instance, CLIP embeddings.

The image segmentation was and embedding generation tasks were chiefly intended as qualitative demonstrations. But the masked pretraining task and the joint generation of images and labels allowed for quantitative evaluation.

Two sets of three images each. In both sets, the first image is of a street scene; the second image is the target segmentation, with objects in the scene masked out in different colors; and the third is the segmentation generated by the model, which is essentially indistinguishable from the target.
Qualitative examples of the segmentation mask generation tasks, with the source image (left), the ground truth segmentation (center), and the masks generated by our method.

We evaluated the masked pretraining model on the task of reconstructing the masked image regions, using learned perceptual image patch similarity (LPIPS) as a metric. LPIPS measures the similarity between two images according to their activations of selected neurons within an image recognition model. Our approach dramatically outperformed the baselines, which were trained only on the reconstruction task, not (simultaneously) on the diffusion task. In some cases, our model’s error rate was almost an order of magnitude lower than the baseline models’.

Two sets of three images each, including a source image, the same image with several black squares of fixed size randomly superimposed upon it, and the model's reconstruction of the complete image.
Our model’s re-creations of masked image regions.

On the task of jointly generating images and labels, our model’s performance was comparable to that of the best baseline vision-language model, with slightly higher precision and slightly lower recall.

For these initial experiments, we evaluated multitask and multimodal performance separately, and each experiment involved only two modalities or tasks. But at least prospectively, the power of our model lies in its generalizability, and in ongoing work, we are evaluating on more than two modalities or tasks at a time and on simultaneous multimodal and multitask training. We are eager to see the result.

Related content

US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians on a mission to develop a fault-tolerant quantum computer. You will be joining a team located in Pasadena, CA that conducts materials research to improve the performance of quantum processors. We are looking to hire a Quantum Research Scientist who will apply their expertise in materials characterization to the optimization of fabricated superconducting quantum devices. In this role, you are expected to lead and assist research projects that are aligned with our Center’s technical roadmap. You will develop new ideas and design experiments aimed at identifying the most promising material systems, characterization techniques, and integration processes for superconducting circuit applications. Key job responsibilities - Conduct experimental studies on the fundamental properties of superconducting, semiconducting, and dielectric thin films - Develop and implement multi-technique materials characterization workflows for thin films and devices, with a focus on the surfaces and interfaces - Work closely with other research scientists on the Materials team to develop material processes directed toward optimizing thin film properties, controlling the surface chemistry and morphology, and impacting device performance - Identify materials properties (chemical, structural, electronic, electrical) that can be a reliable proxy for the performance of superconducting qubits and microwave resonators - Communicate engineering and scientific findings to teammates, the broader CQC and, when appropriate, publish findings in scientific journals A day in the life AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. About the team Our team contributes to the fabrication of processors and other hardware that enable quantum computing technologies. Doing that necessitates the development of materials with tailored properties for superconducting circuits. Research Scientists and Engineers on the Materials team operate deposition and characterization systems in order to develop and optimize thin film processes for use in these devices. They work alongside other Research Scientists and Engineers to help deliver fabricated devices for quantum computing experiments. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
US, CA, Sunnyvale
Help re-invent how millions of people watch TV! Fire TV remains the #1 best-selling streaming media player in the US. Our goal is to be the global leader in delivering entertainment inside and outside the home, with the broadest selection of content, devices and experiences for customers. Our science team works at the intersection of Recommender Systems, Information Retrieval, Machine Learning and Natural Language Understanding. We leverage techniques from all these fields to create novel algorithms that allow our customers to engage with the right content at the right time. Our work directly contributes to making our devices delightful to use and indispensable for the household. Key job responsibilities - Drive new initiatives applying Machine Learning techniques to improve our recommendation, search and entity matching algorithms - Perform hands-on data analysis and modeling with large data sets to develop insights that increase device usage and customer experience - Design and run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Setup and monitor alarms to detect anomalous data patterns and perform root cause analyses to explain and address them - Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences - Help attract and recruit technical talent; mentor junior scientists We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you fascinated by the use of Generative AI to build an advertiser facing solution that predict problems and coach users while they solve real word problems? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the customer service space? If so, Amazon's Support Product & Services (SP&S) team has an exciting opportunity for you as an Applied Scientist. Key job responsibilities • Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the advertising support center domain. • Use Transformers and apply other NLP techniques like Sentence embeddings, Dimensionality reduction, clustering and topic modeling to identify customer intents and utterances. • Use services like AWS Lex, AWS Bedrock etc. to develop advertising facing solutions • Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful solutions. • Automating feedback loops for algorithms in production. • Setup and monitor alarms to detect anomalous data patterns and perform root cause analyses to explain and address them. • Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences. A day in the life You will work closely with a cross functional team of Software Engineers, Product Owners, Data Scientists, and Contact Center experts. You will research and investigate the latest options in industry to apply machine learning and generative AI to real world problems. You will work backwards from customer problems and collaborate with stakeholders to determine how to scale new technology and integrate with complicated help channels used by advertisers everyday. About the team SP&S team provides solutions and libraries that are leveraged by teams all across Amazon Advertising to provide timely and personalized help. The team aims to predict Advertisers problems and proactively surface intelligent guidance to customers at the right time. As a AS, you will help the team to achieve its vision of building and implementing the next generation of Contact Center technology. You will build/leverage LLMs to train them on advertising support domain knowledge and work shoulder to shoulder with stakeholders to externalize to users in novel ways. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. We are seeking a Senior Applied Scientist who has a solid background in applied Machine Learning and Data Science, deep passion for building data-driven products, ability to formulate data insights and scientific vision, and has a proven track record of executing complex projects and delivering business impact. Key job responsibilities • Data driven insights to accelerate acquisition of new members. • Grow benefits adoption based on customer segment, vertical, and drive customers to their "aha moment". • Work closely with software engineering teams to drive model implementations and new feature creations. • Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation • Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Mentor junior scientists, provide technical and career development guidance. About the team The Marketing Science team applies scientific methods and research techniques to enhance our understanding of AB consumer behavior, market trends, and the effectiveness of marketing strategies. Our goal is to develop and advance theories and models that can be used to make informed decisions in marketing and to provide insights into consumer decision-making processes. Additionally, we seek to identify and explore emerging trends and technologies in marketing, and to develop innovative approaches for addressing the challenges and opportunities in the field. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Amazon brings buyers and sellers together. Our retail customers depend on us to give them access to every product at the best possible price. Our sellers depend on us to give them a platform to launch their business into every home and marketplace. Making this happen is the mission of every scientist in North America Stores (NAS) organization. To this end, the Science team is tasked with: · Building and deploying AI / ML models that lead to exponential growth of the business. · Organizing available data sources, and creating detailed dictionaries of data that can be used in future analyses. · Partnering with product teams in evaluating the financial and operational impact of new product offerings. · Partnering with science teams across other organizations to develop state of the art algorithms and models. · Carrying out independent data-backed initiatives that can be leveraged later on in the fields of network organization, costing and financial modeling of processes. · Publishing papers in both internal and external conferences / journals. In order to execute the above mandate we are on the look out for smart and qualified Applied Scientists who will own projects in partnership with product and research teams as well as operate autonomously on independent initiatives that are expected to unlock benefits in the future. A past background in Artificial Intelligence is necessary, along with advanced proficiency in programming languages such as Python and C++. Key job responsibilities As an Applied Scientist, you are able to use a range of artificial intelligence and operations research methodologies to solve challenging business problems when the solution is unclear. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as Redshift, Sagemaker, Lambda, S3, and EC2 with a variety of skillsets in Tabular ML, NLP, Generative AI, Forecasting, Probabilistic ML and Causal ML. You will bring knowledge in many of these domains along with your own specialties and skill-sets. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Seattle, WA, USA
US, NY, New York
Amazon is looking for a Senior Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase access to supply for speed and placement, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As a Senior Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Senior Applied Scientist you will: - Lead a team of scientists to innovate on state-of-the-art sourcing systems. - Set the scientific strategic vision for the team. You lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents. To help describe some of our challenges, we created a short video about SCOT at Amazon: http://bit.ly/amazon-scot About the team Supply Chain Optimization Technologies (SCOT) owns Amazon's global inventory planning systems. We decide what, when, where, and how much we should buy to meet Amazon's business goals and to make our customers happy. We decide how to place and move inventory within Amazon's fulfillment network. We do this for hundreds of millions of items and hundreds of product lines worth billions of dollars worldwide. Check our website if you are curious to learn more about the breadth of problems we tackle: https://www.amazon.science/tag/supply-chain-optimization-technologies We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | New York, NY, USA
US, WA, Seattle
We’re building a foundation LLM for Amazon Stores that fuses general world knowledge with Amazon e-commerce domain knowledge to provide new and improved shopping experiences for our customers. We are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA