Generalizing diffusion modeling to multimodal, multitask settings

A novel loss function and a way to aggregate multimodal input data are key to dramatic improvements on some test data.

One of the lessons of the machine learning revolution has been that, perhaps counterintuitively, training a model on multiple data types or multiple tasks can improve performance relative to single-purpose models. A model trained on multiple languages, for instance, can learn distinctions that are subtle in one language but pronounced in another, and a model trained on, say, object segmentation may learn properties of visual scenes that help it with depth perception.

Related content
First model to work across a wide range of products uses a second U-Net encoder to capture fine-grained product details.

The advantages of multitask and multimodal training, however, are relatively unexplored in the context of diffusion models, which are responsible for some of the most impressive recent results in generative AI. Diffusion models are trained to incrementally denoise samples to which noise has been incrementally added. The result is that feeding them random noisy inputs will yield randomized outputs that are semantically coherent.

In a paper we presented at the International Conference on Learning Representations (ICLR), we describe a general approach to building multimodal, multitask diffusion models. On the input side, we use modality-specific encoders to map data to a shared diffusion space; on the output side, we use multiple task-specific decoders to map general representations to specific outputs.

MM:MT diffusion architecture.png
The architecture of the multimodal, multitask diffusion model.

The paper presents a theoretical analysis of the problem of generalizing diffusion models to the multimodal, multitask setting, and on the basis of that analysis, it proposes several modifications of the loss function typically used for diffusion modeling. In experiments, we tested our approach on four different multimodal or multitask data sets, and across the board, it was able to match or improve performance relative to single-purpose models.

Minding modality

In the standard diffusion modeling scenario, the model’s encoder maps inputs to a representational space; within that space, a forward process iteratively adds noise to the input representation, and a reverse process iteratively removes it.

Related content
Diffusion modeling within the representational space of a variational autoencoder enables state-of-the-art results.

The loss function includes two terms that measure the distance between the probability distribution of the forward process and the learned probability distribution of the reverse process. One term compares the marginal distributions for the two processes in the forward direction: that is, it compares the likelihoods that any given noisy representation will occur during the forward process. The other term compares the posterior representations of the reverse process — that is, the likelihood that a given representation at time t-1 preceded the representation at time t. We modify these terms so that the distributions are conditioned on the modality of the data — that is, the distributions can differ for data of different modalities.

Both of these loss terms operate in the representational space: they consider the likelihood of a particular representation given another representation. But we also have a term in the loss function that looks at the probability that an input of a given modality led to a particular representation. This helps ensure that the reverse process will correctly recover the modality of the data.

MM:MT diffusion loss.png
The loss function for the multimodal-, multitask diffusion model is the sum of four sublosses, L0–L3. L0 compares the noise distributions of the forward and reverse processes, conditioned on the input data (X). L1 compares posterior distributions, also conditioned on the input data. L2 is the new term in our setting, which induces the model to recover input modalities.

Multimodal means

To fuse the multimodal information used to train the model, we consider the transition distribution in the forward direction, which determines how much noise to add to a given data representation. To compute the mean of that distribution, we define a weighted average of the multimodal input encodings, where the weights are based on input modality.

The transition probability of the forward process. The probability of z sub t, conditioned on z sub t minus 1 and X (the input data) is set equal to a normal distribution whose mean is defined by z sub t minus 1 plus the weighted sum of the encodings of the inputs, sorted by modality. The variance is 1 minus a fraction consisting of a time-varying weight over N (the number of different modalities) plus 1.
The equation for computing the mean and variance of the transition probability of the forward process in the multimodal, multitask setting. N is the number of modalities; wt(i) are the weights assigned to different modalities; xi is the input data; and Ei is the input encoder.

On the basis of the transition probabilities of the forward process, we can now compute the marginal distributions of noisy representations and the posterior distributions of the reverse process (corresponding to sublosses L0 and L1 in the loss function):

The equation for the marginal distribution. The probability of z sub t, conditioned on z sub zero and X (the input data), is set equal to the normal distribution whose mean is the sum of z sub zero (with a coefficient) and a weighted sum of input encoding, sorted by modality. The variance includes a time-varying term (1 minus a time-varying variable), which increases the noise at each time step.
The marginal distribution for the noisy representation zt in the multitask setting (corresponding to subloss L0, above).
The equation for the posterior mean includes a noisy data representation (z sub t), modified by constant factors, from which is subtracted t weighted sum of the encodings of input data of different modalities  (E sub i of x sub i).
The equation for the mean of the posterior distribution, in the multitask setting.

Evaluation

We tested our approach on four tasks, two of which were multitask, and two of which were multimodal. The multitask experiments were both in the vision domain: one involved jointly generating visual data and the associated segmentation masks, and the other was a novel multitask pretraining task in which a diffusion generation model also learned fill in masked regions of input images.

Related content
Generative AI supports the creation, at scale, of complex, realistic driving scenarios that can be directed to specific locations and environments.

The multimodal experiments involved images and other modalities. In one, the model was trained to jointly generate images and their labels, and in the other, the model learned to jointly generate images and their embeddings in a representational space — for instance, CLIP embeddings.

The image segmentation was and embedding generation tasks were chiefly intended as qualitative demonstrations. But the masked pretraining task and the joint generation of images and labels allowed for quantitative evaluation.

Two sets of three images each. In both sets, the first image is of a street scene; the second image is the target segmentation, with objects in the scene masked out in different colors; and the third is the segmentation generated by the model, which is essentially indistinguishable from the target.
Qualitative examples of the segmentation mask generation tasks, with the source image (left), the ground truth segmentation (center), and the masks generated by our method.

We evaluated the masked pretraining model on the task of reconstructing the masked image regions, using learned perceptual image patch similarity (LPIPS) as a metric. LPIPS measures the similarity between two images according to their activations of selected neurons within an image recognition model. Our approach dramatically outperformed the baselines, which were trained only on the reconstruction task, not (simultaneously) on the diffusion task. In some cases, our model’s error rate was almost an order of magnitude lower than the baseline models’.

Two sets of three images each, including a source image, the same image with several black squares of fixed size randomly superimposed upon it, and the model's reconstruction of the complete image.
Our model’s re-creations of masked image regions.

On the task of jointly generating images and labels, our model’s performance was comparable to that of the best baseline vision-language model, with slightly higher precision and slightly lower recall.

For these initial experiments, we evaluated multitask and multimodal performance separately, and each experiment involved only two modalities or tasks. But at least prospectively, the power of our model lies in its generalizability, and in ongoing work, we are evaluating on more than two modalities or tasks at a time and on simultaneous multimodal and multitask training. We are eager to see the result.

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.