Dataset helps evaluate gender bias in machine translation models

Test set includes 1,150 text segments, each in nine languages.

In recent years, machine translation systems have become much more accurate and fluent. As their use expands, it has become increasingly important to ensure that they are as fair, unbiased, and accurate as possible.

For example, machine translation systems sometimes incorrectly translate the genders of people referred to in input segments, even when an individual’s gender is unambiguous based on the linguistic context. Such errors can have an outsize impact on the correctness and fairness of translations. We refer to this problem as one of gender translation accuracy.

Translation bias.no_accent.png
Machine translation models sometimes mistranslate the genders of people mentioned in input texts, even when their genders are unambiguous in context.

To make it easier to evaluate gender translation accuracy in a wide variety of scenarios, my colleagues and I at Amazon Translate have released a new evaluation benchmark: MT-GenEval. We describe the benchmark in a paper we are presenting at the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

MT-GenEval is a large, realistic evaluation set that covers translation from English into eight diverse and widely spoken (but in some cases understudied) languages: Arabic, French, German, Hindi, Italian, Portuguese, Russian, and Spanish. In addition to 1,150 segments of evaluation data per language pair, we release 2,400 parallel sentences for training and development.

Unlike widely used bias test sets that are artificially constructed, MT-GenEval data is based on real-world data sourced from Wikipedia and includes professionally created reference translations in each of the languages. We also provide automatic metrics that evaluate both the accuracy and quality of gender translations.

Gender representations

To get a sense of where gender translation inaccuracies often arise, it is helpful to understand how different languages represent gender. In English, there are some words that unambiguously identify gender, such as she (female gender) or brother (male gender).

A quick guide to Amazon's 40+ papers at EMNLP 2022

Explore Amazon researchers’ accepted papers which address topics like information extraction, question answering, query rewriting, geolocation, and pun generation.

Many languages, including those covered in MT-GenEval, have a more extensive system of grammatical gender, where nouns, adjectives, verbs, and other parts of speech can be marked for gender. To give an example, the Spanish translation of “a tall librarian” is different if the librarian is a woman (una bibliotecaria alta) or a man (un bibliotecario alto).

Related content
Eliminating the need for annotation makes bias testing much more practical.

When a machine translation model translates from a language with no or limited gender (like English) into a language with extensive grammatical gender (like Spanish), it must not only translate but also correctly express the genders of words that lack gender in the input. For example, with the English sentence “He is a tall librarian,” the model must correctly select the male grammatical gender for “a” (un, not una), “tall” (alto, not alta) and “librarian” (bibliotecario, not bibliotecaria), all based on the single input word “He.”

In the real world, input texts are often more complex than this simple example, and the word that disambiguates an individual’s gender might be very far — potentially even in another sentence — from the words that express gender in the translation. In these cases, we have observed that machine translation models have a tendency to disregard the disambiguating context and even fall back on gender stereotypes (such as translating “pretty” as female and “handsome” as male, regardless of the context).

While we have seen several anecdotal cases of these types of gender translation accuracy issues, until now there has not been a way to systematically quantify such cases in realistic, complex input text. With MT-GenEval, we hope to bridge this gap.

Building the dataset

To create MT-GenEval, we first scoured English Wikipedia articles to find candidate text segments each of which contained at least one gendered word in a span of three sentences. Because we wanted to ensure that the segments were relevant for evaluating gender accuracy, we asked human annotators to exclude any sentences that either did not refer to individuals (e.g., “The movie She’s All That was released in 1999”) or did not unambiguously express the gender of that individual (e.g., “You are a tall librarian”).

Related content
Open-source library enables optimization of hyperparameters to maximize performance while meeting fairness constraints.

Then, in order to balance the test set by gender, the annotators created counterfactuals for the segments, where each individual’s gender was changed either from female to male or from male to female. (In its initial release, MT-GenEval covers two genders: female and male.) For example, “He is a prince and will someday be king” would be changed to “She is a princess and will someday be queen.” This type of balancing ensures that differently gendered subsets do not have different meanings. Finally, professional translators translated each sentence into the eight target languages.

A balanced test set also allows us to evaluate gender translation accuracy, because for every segment, it provides a correct translation, with correct genders, and a contrastive translation, which differs from the correct translation only in gender-specific words. In the paper, we propose a straightforward accuracy metric: for a given translation with the desired gender, we consider all the gendered words in the contrastive reference. If the translation contains any of the gendered words in the contrastive reference, it is marked incorrect; otherwise, it’s marked correct. Our automatic metric agreed with annotators reasonably well, with F scores of over 80% across all eight target languages (English was the source language).

Related content
Method presented to ICML workshop works with any machine learning model and fairness criterion.

While this assesses translations on the lexical level, we also introduce a metric to measure differences in machine translation quality for masculine and feminine outputs. We define this gender quality gap as the difference in BLEU scores on the masculine and feminine subsets of the balanced dataset.

Given this extensive curation and annotation, MT-GenEval is a step forward for evaluation of gender accuracy in machine translation. We hope that by releasing MT-GenEval, we can inspire more researchers to work on improving gender translation accuracy on complex, real-world inputs in a variety of languages.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Are you looking for an opportunity to own a large-scale technology problem? Do you enjoy finding patterns and pushing the boundaries of current possibilities? Are you interested in building reliable and scalable systems that support Amazon's growth? If so, Amazon Devices and Services Finance Technology (FinTech) is the perfect place for you! ABOUT THE TEAM Amazon Devices and Services FinTech is the global team that designs and builds the financial planning and analysis tools for a wide variety of Devices` new and established organizations. From Kindle to Ring and even new and exciting companies like Kuiper (our new interstellar satellite play), this team enjoys a wide variety of complex and interesting problem spaces. They are almost like FinTech consultants embedded in Amazon. ABOUT THIS ROLE The Amazon Devices and Services FinTech team is expanding our data science team that is building a forecasting solution for the Amazon Devices and Services Finance organization, and we are looking for a Data Scientist to join us. As a data scientist, you will dive deep into data from across Amazon's finance organization, extract new insights, drive investigations and algorithm development, and interface with technical and non-technical customers. You will leverage your data science expertise and communication skills to pivot between delivering science solutions, translating knowledge of finance and operational processes into forecasting models, and communicating insights and recommendations to audiences of varying levels of technical sophistication in support of specific business questions, root cause analysis, planning, and innovation for the future. Key job responsibilities - Create various forecasts, including but not limited to Operational Expenses, and drive adoption of these forecasts by various teams within Amazon for financial and operations planning - Continuously innovate through research and the application of the latest machine learning techniques to drive forecasting accuracy improvement - Perform exploratory data analysis to identify business opportunities and develop a plan to address them - Communicate verbally and in writing to business customers with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations - Build customer-facing reporting tools to provide insights and metrics which track forecast performance and explain variance - Utilize code (Python, R, Scala, SQL, etc.) for analyzing data and building statistical and machine/deep learning models A day in the life In a typical day as a data scientist at Amazon FinTech, you'll begin by delving into complex datasets, applying your technical expertise in feature engineering and exploratory data analysis to uncover valuable insights. You'll utilize both traditional time series forecasting techniques as well as more advanced machine learning algorithms to build accurate and reliable forecasting models that solve complex business problems like Operational Expense (OpEx) Forecasting. Collaboration with business, engineering, and partner teams is essential, as you'll translate your data-driven forecasts into actionable insights that align with strategic goals. Throughout the day, you'll innovate by adapting new forecasting methods, ensuring your solutions are stable, scalable, and fault-tolerant. Your strong communication skills and attention to detail will help you manage and integrate large datasets, solve unstructured problems, and drive projects to completion in a fast-paced, dynamic environment. Join us and be a part of our dynamic team, driving the future of financial technology at Amazon.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques