Amazon Mentors Help UMass Graduate Students Make Concrete Advances on Vital Machine Learning Problems

Earlier this month, Varun Sharma and Akshit Tyagi, two master’s students from the University of Massachusetts Amherst, began summer internships at Amazon, where, like many other scientists in training, they will be working on Alexa’s spoken-language-understanding systems.

But for Sharma and Tyagi, the internship is the culmination of a relationship that began last winter, when they enrolled in a course in UMass Amherst’s College of Information and Computer Sciences called Industry Mentorship Independent Study, taught by distinguished professor Andrew McCallum and managed by the college’s Center for Data Science.

Students in the class were divided into four- to five-person teams, each of which spent the entire spring semester working on a single project, with the guidance of industry mentors from a company with a strong artificial-intelligence research program. Sharma and Tyagi were part of a five-member team mentored by Rahul Gupta, a senior applied scientist, and Bill Campbell, an applied science manager, both of the Alexa Natural Understanding group based in Cambridge, MA.

The entire class met once a week for a two-hour session with McCallum, in which students reported their progress to each other and received feedback from McCallum, the course teaching assistant, and several other PhD-level volunteers. But each team also met separately with its mentors.

“We would talk weekly to brainstorm ideas and discuss current progress and also try and divide tasks among the team members,” Sharma says. “Plus, they have a ton of experience that we don’t have, so they would tell us about things to watch out for or help out with stuff that we were stuck on.”

“But the most beneficial thing, I’d say, would be the access,” Sharma adds. “You don’t have that in other classes. I never had one-on-one office hours that would go for an hour before.”

IMG_4756.jpeg._CB442923193_.jpg
Amazon mentors Bill Campbell and Rahul Gupta meet with students in the UMass Amherst College of Information and Computer Sciences' Industry Mentorship Independent Study. From left to right: Varun Sharma, Lynn Samson, Zihang Wang, Bill Campbell, Rahul Gupta, Nan Zhuang, and Akshit Tyagi

At the beginning of the semester, Gupta and Campbell presented the UMass students with a set of possible research topics that they had developed with other members of the Alexa Natural Understanding group. The students eventually chose “early exit” strategies for neural networks as their topic.

Most recent advances in artificial intelligence — including Alexa’s latest natural-language-understanding systems — are the result of neural networks, dense networks of simple information processors that collectively execute some computation. The more complex the computation, the larger the network tends to be. But larger networks are also slower, presenting challenges for real-time systems such as Alexa.

Typically, neural networks are arranged into layers, with data bubbling up through the layers until, finally, the output of the top layer represents the result of the computation. Early-exit strategies are techniques for “bailing out” when the outputs of lower layers already represent reliable computation results, reducing processing time. The key is making this determination on the fly, so that more-challenging inputs are still processed by the full network.

“There’s a need in devices and clouds and also in edge computing” — or decentralized computing schemes that push computational resources closer to the edge of the network — “to potentially split the computation or to reduce the load,” Campbell says. “That also has the advantage that you may get insight into what kind of features are being extracted by the system. If you early exit, you say, ‘Well, the neural net has pretty good features at this point already for this particular problem.’ So the motivation is computational but also a qualitative understanding of how things are making decisions and potentially splitting the computation between some edge device and the cloud.”

“This is of particular importance to our devices that are in offline mode,” Gupta adds. “We support a very limited set of functionalities offline. With this we can expand the set of functionalities, where more of those decisions can be made on the device. Even devices that require an Internet connection, if the Internet connection goes down, they can still maintain this model functionality.”

Sharma, Tyagi, and the other members of their UMass team — Nan Zhuang, Zihang Wang, and Lynn Samson — experimented with a neural net consisting of three stacked long short-term memory layers, or LSTMs. LSTMs process ordered inputs in sequence, so that the output corresponding to any given input factors in both the inputs and outputs that preceded it. This is a useful property in natural-language processing, where word order is a valuable source of information.

Neural networks are typically trained on labeled data, and during training, their goal is to minimize “loss”, or the difference between the labels they apply to the data and the true labels. Usually, the loss function applies only to the output of the network’s last layer.

In their experiments, the UMass students instead correlated labels with the outputs of each of the network’s three layers, and the loss function factored in all three layers’ outputs. In fact, the loss function assigned greater weight to the outputs of the networks’ lower layers, essentially forcing them to produce labels that were as accurate as possible.

The outputs of neural networks are also probabilistic. Suppose, for instance, that a request to the Alexa music service is classified according to one of a dozen “intents”, such as playing music, playing a radio station, creating a new station, getting details about music, or the like. Then the output of the intent classification network would indicate the probability that the request belonged to each of those classes.

At each layer of their network, the UMass students used those probabilities as a confidence measure, to determine whether or not to exit early. Where previous early-exit strategies had used a threshold confidence score as a hard cutoff, the UMass system instead uses entropy, an information measure that considers not only the likelihood of the most probable classification but also the relative probabilities of all the others.

Sharma, Tyagi, and their teammates found that with their LSTM network, the number of operations the system had to perform (floating-point operations, or FLOPs) was roughly proportional to the number of network layers that processed an input: 23,084 FLOPs with exit after one layer, 46,143 with exit after two, and 69,202 with exit after three. A reference model without early exit required 69,192 FLOPs on the same input, so the additional machinery for early exit added very little overhead.

Moreover, the early-exit model was actually, on average, more accurate than the reference model, despite reducing computation time significantly. The researchers suspect that that’s because forcing the network’s early layers to produce more-accurate representations “regularized” the network, or ensured that computations were evenly distributed across it. This prevents overfitting, or tailoring the network’s computations too narrowly to the training data.

Results like these mean that the UMass students’ project was no mere academic exercise. “Programs like the UMass Amherst Center for Data Science mentorship class not only strengthen our ties to the academic community and help us identify promising young researchers, but they also help us make real progress on projects that will help Alexa become smarter and more trustworthy,” Gupta says.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, MA, North Reading
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 3-month internship to join AR full-time (40 hours/week) from May 2023 to August 2023. Amazon Robotics internships opportunities will be based out of the Greater Boston Area in our two state-of-the-art facilities in Westborough, MA and North Reading, MA. Both campuses provide a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.About the teamWe are seeking data scientist interns to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summaryThis role may be located in Seattle, Irvine, San Francisco or New York City and will require a minimum of 10% travel for in office or offsite meetings.The Games Growth Adverting team is seeking an exceptional Applied Scientist to lead the foundation of a disruptive advertising system set to revolutionize customer acquisition for Game Developers. This is a great opportunity to innovate on the entire breadth of the AdTech funnel, working in close collaboration with multiple science teams across Amazon Ads. You will lead the building of a platform that delivers world-class optimization for price, relevance, and reach; enabling marketers to drive user acquisition for console, mobile, and PC games. The ideal candidate will have a background in NLP, IR, Personalization or AdTech in production. Key job responsibilitiesLead the design and development of large scale, performant machine learning systems in production for various AdTech use casesInfluence the product roadmap using data backed experimentsUse prior background in NLP/IR/large scale deep learning systems to explore the frontiers of supervised/semi-supervised learning enabling generalization across multiple use casesEstablish scalable, efficient, and automated processes for large scale model development, validation, and implementationMentor junior scientists on the teamHave fun working on ground breaking technology with people just as passionate about their work as you!A day in the lifeWhen you join The Games Growth Advertising Team, your creative partners will be some of the best from the games industry. They have built and published hundreds of the most successful video games in history. Your game studio partners are excited to build the next hit games, but they need your help. We are an Amazon team that helps game developers reach more customers who will love their games. It’s always Day-1 at Amazon, but it’s particularly Day-1 in our game growth business, and we’re excited to see what you can do. Inclusive Culture, Work/Life Balance, & Career GrowthWe embrace our differences and are committed to furthering our culture of inclusion. We offer ten employee-led affinity groups with 190 global chapters, innovative benefits, and annual and ongoing learning experiences (including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences). Our team also puts a high value on work-life balance and offers flexible working hours. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. Additionally, our team is dedicated to supporting you with mentorship and pathways for ongoing development. We have a broad mix of experience levels and tenures, and are building an environment that celebrates knowledge sharing and promotes career choice.About the teamGame Growth Advertising applies the principles of Amazonian culture to the world of gaming user acquisition. We believe in a future where everyone is a gamer and everyone can create, compete, collaborate and connect through games, and we are looking for the right people to help us build that future. We want to be the user acquisition tool of choice for game developers across hardware platforms and gaming genres at scale. Using large scale data and state-of-the-art machine learning techniques, we are excited about shaping the future of programmatic advertising.
DE, BW, Tuebingen
Job summaryAre you passionate about solving real-world challenges using cutting-edge artificial intelligence (AI) and machine learning (ML) technology? Would you like to work with some of the best scientists in the field to transition new AI/ML technologies from the research stage into products?As a Data Scientist in our Lablet, you will be working on cutting edge projects in the intersection of computer vision, graphs, fairness, and causal inference. You will be part of an ambitious team of scientists and software engineers with the goal of solving customer problems at scale. You and your team will work backwards from customer problems, and collaborate with other AWS service teams to develop proof of concepts and transition promising new technology into products.Key job responsibilitiesAs a Data Scientist in the AWS Lablet, you will work backwards from real-world customer problems and prototype, develop and productionize innovative ML techniques to help add business value. You will build tools that accelerate development cycles and facilitate maintenance. You will stay up to date with the state-of-the-art ML research and continuously experiment with new techniques in order to keep pushing the boundaries of what is possible. You will advise scientists on architecture, design and technical choices, and promote engineering excellence within the research team.A day in the lifeWe at AWS value individual expression, respect different opinions, and work together to create a culture where each of us is able to contribute fully. Our unique backgrounds and perspectives strengthen our ability to achieve Amazon's mission of being Earth's most customer-centric company.About the teamThe AWS Lablet team and its scientific head Bernhard Schoelkopf are located at the Tubingen site in Germany. Lablets We decided to start Lablets in a meeting with AWS leadership in late 2018 in order to address two needs: (1) tackle hard AI science problems that do not have an immediate product impact yet may present big opportunities for our business in the future, and (2) display AI leadership by top publications visible to AWS customers whose choice of cloud platform is influenced by perceived AI strength as a way to futureproof their choice. We did so with the expectation that (1) and (2) will both require and enable us to attract talent that significantly raises the bar in terms of AI strength. Lablets provide the environment that top AI/ML talent expects while avoiding the trap of a large centralized research lab. By co-locating with outstanding academic ML centers, they enable the type of transformational work and academic visibility that top scientists deliver without copying large industrial research labs that try to build critical academic mass in a less frugal manner, often have limited impact or get academically stale over time once the influx of new top talent stops.Lablets attract top ML talent and enable some of our strongest scientists to do long-term science projects. We aspire to couple the possibility to have real-world customer impact, where Amazon excels, with the academic reputation of Google Brain/Deepmind/FAIR. We recruit scientists who are free in their research within the (well chosen) fields for which we recruit them. We seek to attract and empower scientists who want to shape the ongoing AI revolution. For those scientists, customer impact is a strong benefit.Lablets Solution LabTo further strengthen the transition mechanism over the next two years, we will equip our lablets with LSL (Lablets Solution Lab) teams. We will staff each of these teams with 2-3 AS/MLE/DS and a PMT. Each LSL team is close to its Lablet’s research activities and deeply understands its potential. Its mission is to work closely with customer-facing organizations like SA, MLSL, PMs from other organizations, and customer teams to propose and prototype solutions to customer problems, leveraging Lablets research. To deliver on its mission, the LSL team acts like a specialized ML Solutions Lab (MLSL) to develop small PoCs with representative customers, mainly with internal customers. In addition, the LSL team is responsible for producing PRFAQs with the goal of starting technology deployment projects for the most promising solutions.If you are interested in joining our team please contact yjadidi@.
US, CA, Cupertino
Job summaryThe retail pricing science and research group is a team of scientists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.We are seeking an applied scientist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, machine learning and optimization theory to design new methods and pricing strategies to deliver game changing value to our customers. Key job responsibilitiesThe Applied Scientist will partner with senior scientists on the team, the product managers, and the engineers to develop ML models and solutions for our business problems. They build scalable prototypes and design the right simulation and metrics to examine their efficacy. They will represent and advocate their models to the leaders in our organization. A day in the lifeDiscussions with other scientists, as well as with product managers and tech leaders to understand the business problemBrainstorming with other scientists to design the right model for the problem in handDeep dive into the data and find efficient ways to collect and use itModeling and creating working prototypesAnalyze the results and review with partnersPresent journal quality research in Internal and External science forumsAbout the teamThe pricing research group is a team of ML scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.