Amazon Mentors Help UMass Graduate Students Make Concrete Advances on Vital Machine Learning Problems

Earlier this month, Varun Sharma and Akshit Tyagi, two master’s students from the University of Massachusetts Amherst, began summer internships at Amazon, where, like many other scientists in training, they will be working on Alexa’s spoken-language-understanding systems.

But for Sharma and Tyagi, the internship is the culmination of a relationship that began last winter, when they enrolled in a course in UMass Amherst’s College of Information and Computer Sciences called Industry Mentorship Independent Study, taught by distinguished professor Andrew McCallum and managed by the college’s Center for Data Science.

Students in the class were divided into four- to five-person teams, each of which spent the entire spring semester working on a single project, with the guidance of industry mentors from a company with a strong artificial-intelligence research program. Sharma and Tyagi were part of a five-member team mentored by Rahul Gupta, a senior applied scientist, and Bill Campbell, an applied science manager, both of the Alexa Natural Understanding group based in Cambridge, MA.

The entire class met once a week for a two-hour session with McCallum, in which students reported their progress to each other and received feedback from McCallum, the course teaching assistant, and several other PhD-level volunteers. But each team also met separately with its mentors.

“We would talk weekly to brainstorm ideas and discuss current progress and also try and divide tasks among the team members,” Sharma says. “Plus, they have a ton of experience that we don’t have, so they would tell us about things to watch out for or help out with stuff that we were stuck on.”

“But the most beneficial thing, I’d say, would be the access,” Sharma adds. “You don’t have that in other classes. I never had one-on-one office hours that would go for an hour before.”

IMG_4756.jpeg._CB442923193_.jpg
Amazon mentors Bill Campbell and Rahul Gupta meet with students in the UMass Amherst College of Information and Computer Sciences' Industry Mentorship Independent Study. From left to right: Varun Sharma, Lynn Samson, Zihang Wang, Bill Campbell, Rahul Gupta, Nan Zhuang, and Akshit Tyagi

At the beginning of the semester, Gupta and Campbell presented the UMass students with a set of possible research topics that they had developed with other members of the Alexa Natural Understanding group. The students eventually chose “early exit” strategies for neural networks as their topic.

Most recent advances in artificial intelligence — including Alexa’s latest natural-language-understanding systems — are the result of neural networks, dense networks of simple information processors that collectively execute some computation. The more complex the computation, the larger the network tends to be. But larger networks are also slower, presenting challenges for real-time systems such as Alexa.

Typically, neural networks are arranged into layers, with data bubbling up through the layers until, finally, the output of the top layer represents the result of the computation. Early-exit strategies are techniques for “bailing out” when the outputs of lower layers already represent reliable computation results, reducing processing time. The key is making this determination on the fly, so that more-challenging inputs are still processed by the full network.

“There’s a need in devices and clouds and also in edge computing” — or decentralized computing schemes that push computational resources closer to the edge of the network — “to potentially split the computation or to reduce the load,” Campbell says. “That also has the advantage that you may get insight into what kind of features are being extracted by the system. If you early exit, you say, ‘Well, the neural net has pretty good features at this point already for this particular problem.’ So the motivation is computational but also a qualitative understanding of how things are making decisions and potentially splitting the computation between some edge device and the cloud.”

“This is of particular importance to our devices that are in offline mode,” Gupta adds. “We support a very limited set of functionalities offline. With this we can expand the set of functionalities, where more of those decisions can be made on the device. Even devices that require an Internet connection, if the Internet connection goes down, they can still maintain this model functionality.”

Sharma, Tyagi, and the other members of their UMass team — Nan Zhuang, Zihang Wang, and Lynn Samson — experimented with a neural net consisting of three stacked long short-term memory layers, or LSTMs. LSTMs process ordered inputs in sequence, so that the output corresponding to any given input factors in both the inputs and outputs that preceded it. This is a useful property in natural-language processing, where word order is a valuable source of information.

Neural networks are typically trained on labeled data, and during training, their goal is to minimize “loss”, or the difference between the labels they apply to the data and the true labels. Usually, the loss function applies only to the output of the network’s last layer.

In their experiments, the UMass students instead correlated labels with the outputs of each of the network’s three layers, and the loss function factored in all three layers’ outputs. In fact, the loss function assigned greater weight to the outputs of the networks’ lower layers, essentially forcing them to produce labels that were as accurate as possible.

The outputs of neural networks are also probabilistic. Suppose, for instance, that a request to the Alexa music service is classified according to one of a dozen “intents”, such as playing music, playing a radio station, creating a new station, getting details about music, or the like. Then the output of the intent classification network would indicate the probability that the request belonged to each of those classes.

At each layer of their network, the UMass students used those probabilities as a confidence measure, to determine whether or not to exit early. Where previous early-exit strategies had used a threshold confidence score as a hard cutoff, the UMass system instead uses entropy, an information measure that considers not only the likelihood of the most probable classification but also the relative probabilities of all the others.

Sharma, Tyagi, and their teammates found that with their LSTM network, the number of operations the system had to perform (floating-point operations, or FLOPs) was roughly proportional to the number of network layers that processed an input: 23,084 FLOPs with exit after one layer, 46,143 with exit after two, and 69,202 with exit after three. A reference model without early exit required 69,192 FLOPs on the same input, so the additional machinery for early exit added very little overhead.

Moreover, the early-exit model was actually, on average, more accurate than the reference model, despite reducing computation time significantly. The researchers suspect that that’s because forcing the network’s early layers to produce more-accurate representations “regularized” the network, or ensured that computations were evenly distributed across it. This prevents overfitting, or tailoring the network’s computations too narrowly to the training data.

Results like these mean that the UMass students’ project was no mere academic exercise. “Programs like the UMass Amherst Center for Data Science mentorship class not only strengthen our ties to the academic community and help us identify promising young researchers, but they also help us make real progress on projects that will help Alexa become smarter and more trustworthy,” Gupta says.

Related content

FR, Clichy
The role can be based in any of our EU offices. Amazon Supply Chain forms the backbone of the fastest growing e-commerce business in the world. The sheer growth of the business and the company's mission "to be Earth’s most customer-centric company” makes the customer fulfillment business bigger and more complex with each passing year. The EU SC Science Optimization team is looking for a Science leader to tackle complex and ambiguous forecasting and optimization problems for our EU fulfillment network. The team owns the optimization of our Supply Chain from our suppliers to our customers. We are also responsible for analyzing the performance of our Supply Chain end-to-end and deploying Statistics, Econometrics, Operations Research and Machine Learning models to improve decision making within our organization, including forecasting, planning and executing our network. We work closely with Supply Chain Optimization Technology (SCOT) teams, who own the systems and the inputs we rely on to plan our networks, the worldwide scientific community, and with our internal EU stakeholders within Supply Chain, Transportation, Store and Finance. The ideal candidate has a well-rounded-technical/science background as well as a history of leading large projects end-to-end, and is comfortable in developing long term research strategy while ensuring the delivery of incremental results in an ever-changing operational environment. As a Sr. Science Manager, you will lead and grow a high-performing team of data and research scientists, technical program managers and business intelligence engineers. You will partner with operations, finance, store, science and engineering leadership to identify opportunities to drive efficiency improvement in our Fulfillment Center network flows via optimization and scalable execution. As a science leader, you will not only develop optimization solutions, but also influence strategy and outcomes across multiple partner science teams such as forecasting, transportation network design, or modelling teams. You will identify new areas of investment and research and work to align roadmaps to deliver on these opportunities. This role is inherently cross-functional and requires an ability to communicate, influence and earn the trust of science, technical, operations and business leadership.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Estimate econometric models using large datasets. Must know SQL and Matlab.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
US, WA, Seattle
Amazon Prime Video is changing the way millions of customers enjoy digital content. Prime Video delivers premium content to customers through purchase and rental of movies and TV shows, unlimited on-demand streaming through Amazon Prime subscriptions, add-on channels like Showtime and HBO, and live concerts and sporting events like NFL Thursday Night Football. In total, Prime Video offers nearly 200,000 titles and is available across a wide variety of platforms, including PCs and Macs, Android and iOS mobile devices, Fire Tablets and Fire TV, Smart TVs, game consoles, Blu-ray players, set-top-boxes, and video-enabled Alexa devices. Amazon believes so strongly in the future of video that we've launched our own Amazon Studios to produce original movies and TV shows, many of which have already earned critical acclaim and top awards, including Oscars, Emmys and Golden Globes. The Global Consumer Engagement team within Amazon Prime Video builds product and technology solutions that drive customer activation and engagement across all our supported devices and global footprint. We obsess over finding effective, programmatic and scalable ways to reach customers via a broad portfolio of both in-app and out-of-app experiences. We would love to have you join us to build models that can classify and detect content available on Prime Video. We need you to analyze the video, audio and textual signal streams and improve state-of-art solutions while being scalable to Amazon size data. We need to solve problems across many cultures and languages, working alongside an operations team generating labels across many languages to help us achieve these goals. Our team consistently strives to innovate, and holds several novel patents and inventions in the motion picture and television industry. We are highly motivated to extend the state of the art. As a member of our team, you will apply your deep knowledge of Computer Vision and Machine Learning to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on addressing fundamental computer vision models like video understanding and video summarization in addition to building appropriate large scale datasets. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with independence and are often assigned to focus on areas with significant impact on audience satisfaction. You must be equally comfortable with digging in to customer requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than pleasing our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies and deep learning approaches to your solutions. We embrace the challenges of a fast paced market and evolving technologies, paving the way to universal availability of content. You will be encouraged to see the big picture, be innovative, and positively impact millions of customers. This is a young and evolving business where creativity and drive will have a lasting impact on the way video is enjoyed worldwide.
US, NY, New York
Amazon is looking for an outstanding Data Scientist to help build the next generation of selection systems. On the Specialized Selection team within the Supply Chain Optimization Technologies (SCOT) organization, we own the selection systems that determine which products Amazon offers in our fastest delivery programs. We build state-of-the-art models leveraging tools from machine learning, numerical optimization, natural language processing, and causal inference to automate the management of Amazon's sub-same day (SSD) selection at scale. We sit as a part of one of the largest and most sophisticated supply chains in the world. We operate a highly cross-functional team across software, science, analytics, and product to define and scalably execute the strategic direction of SSD and speed selection more broadly. As a Data Scientist on the team, you will work with scientists, engineers, product managers, and business stakeholders to conduct analyses that reveal key business insights and leverage data science and machine learning techniques to develop new models and solutions to emergent business problems. Key job responsibilities Understanding business problems and translate them to appropriate scientific solutions; Using data to provide new insights and clarity to ambiguous situations; Designing effective, scalable, and achievable solutions to key business problems; Developing the right set of metrics to evaluate efficacy of your models and solutions; Prototyping and analyzing new models and business logic; Communicating, both written and verbally, with both technical and business audiences throughout each project; Contributing to the scientific community across the organization
US, CA, Palo Alto
Join a team working on cutting-edge science to innovate search experiences for Amazon shoppers! Amazon Search helps customers shop with ease, confidence and delight WW. We aim to transform Search from an information retrieval engine to a shopping engine. In this role, you will build models to generate and recommend search queries that can help customers fulfill their shopping missions, reduce search efforts and let them explore and discover new products. You will also build models and applications that will increase customer awareness of related products and product attributes that might be best suited to fulfill the customer needs. Key job responsibilities On a day-to-day basis, you will: Design, develop, and evaluate highly innovative, scalable models and algorithms; Design and execute experiments to determine the impact of your models and algorithms; Work with product and software engineering teams to manage the integration of successful models and algorithms in complex, real-time production systems at very large scale; Share knowledge and research outcomes via internal and external conferences and journal publications; Project manage cross-functional Machine Learning initiatives. About the team The mission of Search Assistance is to improve search feature by reducing customers’ effort to search. We achieve this through three customer-facing features: Autocomplete, Spelling Correction and Related Searches. The core capability behind the three features is backend service Query Recommendation.
US, CA, Palo Alto
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning (ML) pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for energetic, entrepreneurial, and self-driven science leaders to join the team. Key job responsibilities As a Principal Applied Scientist in the team, you will: Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. Work with our engineering partners and draw upon your experience to meet latency and other system constraints. Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!"?
US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: * Hardware-informed efficient model architecture, training objective and curriculum design * Distributed training, accelerated optimization methods * Continual learning, multi-task/meta learning * Reasoning, interactive learning, reinforcement learning * Robustness, privacy, model watermarking * Model compression, distillation, pruning, sparsification, quantization About Us Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.