Alexa unveils new speech recognition, text-to-speech technologies

Leveraging large language models will make interactions with Alexa more natural and engaging.

Today in Arlington, Virginia, at Amazon’s new HQ2, Amazon senior vice president Dave Limp hosted an event at which the Devices and Services organization rolled out its new lineup of products and services. For part of the presentation, Limp was joined by Rohit Prasad, an Amazon senior vice president and head scientist for artificial general intelligence, who previewed a host of innovations from the Alexa team.

Prasad’s main announcement was the release of the new Alexa large language model (LLM), a larger and more generalized model that has been optimized for voice applications. This model can converse with customers on any topic; it’s been fine-tuned to reliably make the right API calls, so it will turn on the right lights and adjust the temperature in the right rooms; it’s capable of proactive, inference-based personalization, so it can highlight calendar events, recently played music, or even recipe recommendations based on a customer’s grocery purchases; it has several knowledge-grounding mechanisms, to make its factual assertions more reliable; and it has guardrails in place to protect customer privacy.

Alexa-Speech-Show-back.jpeg
New Amazon speech technologies leverage large language models to make interactions with Alexa more natural and engaging.

During the presentation, Prasad discussed several other upgrades to Alexa’s conversational-AI models, designed to make interactions with Alexa more natural. One is a new way of invoking Alexa by simply looking at the screen of a camera-enabled Alexa device, eliminating the need to say the wake word on every turn: on-device visual processing is combined with acoustic models to determine whether a customer is speaking to Alexa or someone else.

Related content
Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

Alexa has also had its automatic-speech-recognition (ASR) system overhauled — including machine learning models, algorithms, and hardware — and it’s moving to a new large text-to-speech (LTTS) model that’s based on the LLM architecture and is trained on thousands of hours of multispeaker, multilingual, multiaccent, and multi-speaking-style audio data.

Finally, Prasad unveiled Alexa’s new speech-to-speech model, an LLM-based model that produces output speech directly from input speech. With the speech-to-speech model, Alexa will exhibit humanlike conversational attributes, such as laughter, and it will be able to adapt its prosody not only to the content of its own utterances but to the speaker’s prosody as well — for instance, responding with excitement to the speaker’s excitement.

The ASR update will go live later this year; both LTTS and the speech-to-speech model will be deployed next year.

Speech recognition

The new Alexa ASR model is a multibillion-parameter model trained on a mix of short, goal-oriented utterances and longer-form conversations. Training required a careful alternation of data types and training targets to ensure best-in-class performance on both types of interactions.

To accommodate the larger ASR model, Alexa is moving from CPU-based speech processing to hardware-accelerated processing. The inputs to an ASR model are frames of data, or 30-millisecond snapshots of the speech signal’s frequency spectrum. On CPUs, frames are typically processed one at a time. But that’s inefficient on GPUs, which have many processing cores that run in parallel and need enough data to keep them all busy.

Related content
Determining on the fly how much additional audio to process to resolve ambiguities increases accuracy while reducing latency relative to fixed-lookahead approaches.

Alexa’s new ASR engine accumulates frames of input speech until it has enough data to ensure adequate work for all the cores in the GPUs. To minimize latency, it also tracks the pauses in the speech signal, and if the pause duration is long enough to indicate the possible end of speech, it immediately sends all accumulated frames.

The batching of speech data required for GPU processing also enables a new speech recognition algorithm that uses dynamic lookahead to improve ASR accuracy. Typically, when a streaming ASR application is interpreting an input frame, it uses the preceding frames as context: information about past frames can constrain its hypotheses about the current frame in a useful way. With batched data, however, the ASR model can use not only the preceding frames but also the following frames as context, yielding more accurate hypotheses.

The final determination of end-of-speech is made by an ASR engine’s end-pointer. The earliest end-pointers all relied on pause length. Since the advent of end-to-end speech recognition, ASR models have been trained on audio-text pairs whose texts include a special end-of-speech token at the end of each utterance. The model then learns to output the token as part of its ASR hypotheses, indicating end of speech.

Related content
Knowledge distillation and discriminative training enable efficient use of a BERT-based model to rescore automatic-speech-recognition hypotheses.

Alexa’s ASR engine has been updated with a new two-pass end-pointer that can better handle the type of mid-sentence pauses common in more extended conversational exchanges The second pass is performed by an end-pointing arbitrator, which takes as input the ASR model’s transcription of the current speech signal and its encoding of the signal. While the encoding captures features necessary for speech recognition, it also contains information useful for identifying acoustic and prosodic cues that indicate whether a user has finished speaking.

The end-pointing arbitrator is a separately trained deep-learning model that outputs a decision about whether the last frame of its input truly represents end of speech. Because it factors in both semantic and acoustic data, its judgments are more accurate than those of a model that prioritizes one or the other. And because it takes ASR encodings as input, it can leverage the ever-increasing scale of ASR models to continue to improve accuracy.

Once the new ASR model has generated a set of hypotheses about the text corresponding to the input speech, the hypotheses pass to an LLM that has been fine-tuned to rerank them, to yield more accurate results.

Alexa-Speech-Model_End Pointing.jpg
The architecture of the new two-stage end-pointer.

In the event that the new, improved end-pointer cuts off speech too soon, Alexa can still recover, thanks to a model that helps repair truncated speech. Applied scientist Marco Damonte and Angus Addlesee, a former intern studying artificial intelligence at Heriot-Watt University, described this model on the Amazon Science blog after presenting a paper about it at Interspeech.

The model produces a graph representation of the semantic relationships between words in an input text. From the map, downstream models can often infer the missing information; when they can’t, they can still often infer the semantic role of the missing words, which can help Alexa ask clarifying questions. This, too, makes conversation with Alexa more natural.

Large text-to-speech

Unlike earlier TTS models, LTTS is an end-to-end model. It consists of a traditional text-to-text LLM and a speech synthesis model that are fine-tuned in tandem, so the output of the LLM is tailored to the needs of the speech synthesizer. The fine-tuning dataset consists of thousands of hours of speech, versus the 100 or so hours used to train earlier models.

Related content
Senior principal scientist Jasha Droppo on the shared architectures of large language models and spectrum quantization text-to-speech models — and other convergences between the two fields.

The fine-tuned LTTS model learns to implicitly model the prosody, tonality, intonation, paralinguistics, and other aspects of speech, and its output is used to generate speech.

The result is speech that combines the complete range of emotional elements present in human communication — such as curiosity when asking questions and comic joke deliveries — with natural disfluencies and paralinguistic sounds (such as ums, ahs, or muttering) to create natural, expressive, and human-like speech output.

A comparison of Alexa's existing text-to-speech model and the new LTTS model.

Existing model
LTTS model

To further enhance the model’s expressivity, the LTTS model can be used in conjunction with another LLM fine-tuned to tag input text with “stage directions” indicating how the text should be delivered. The tagged text then passes to the TTS model for conversion to speech.

The speech-to-speech model

The Alexa speech-to-speech model will leverage a proprietary pretrained LLM to enable end-to-end speech processing: the input is an encoding of the customer’s speech signal, and the output is an encoding of Alexa’s speech signal in response.

That encoding is one of the keys to the approach. It’s a learned encoding, and it represents both semantic and acoustic features. The speech-to-speech model uses the same encoding for both input and output; the output is then decoded to produce an acoustic signal in one of Alexa’s voices. The shared “vocabulary” of input and output is what makes it possible to build the model atop a pretrained LLM.

A sample speech-to-speech interaction

The LLM is fine-tuned on an array of different tasks, such as speech recognition and speech-to-speech translation, to ensure its generality.

Alexa-Speech-S2S.jpeg
The speech-to-speech model has a multistep training procedure: (1) pretraining of modality-specific text and audio models; (2) multimodal training and intermodal alignment; (3) initialization of the speech-to-speech LLM; (4) fine-tuning of the LLM on a mix of self-supervised losses and supervised speech tasks; (5) alignment to desired customer experience.

Alexa’s new capabilities will begin rolling out over the next few months.

Research areas

Related content

DE, Berlin
AWS AI is looking for passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology and code generation. We are open to hiring candidates to work out of one of the following locations: Berlin, DEU
US, MA, North Reading
Working at Amazon Robotics Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart, collaborative team of doers that work passionately to apply cutting-edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Position Overview The Amazon Robotics (AR) Software Research and Science team builds and runs simulation experiments and delivers analyses that are central to understanding the performance of the entire AR system. This includes operational and software scaling characteristics, bottlenecks, and robustness to “chaos monkey” stresses -- we inform critical engineering and business decisions about Amazon’s approach to robotic fulfillment. We are seeking an enthusiastic Data Scientist to design and implement state-of-the-art solutions for never-before-solved problems. The DS will collaborate closely with other research and robotics experts to design and run experiments, research new algorithms, and find new ways to improve Amazon Robotics analytics to optimize the Customer experience. They will partner with technology and product leaders to solve business problems using scientific approaches. They will build new tools and invent business insights that surprise and delight our customers. They will work to quantify system performance at scale, and to expand the breadth and depth of our analysis to increase the ability of software components and warehouse processes. They will work to evolve our library of key performance indicators and construct experiments that efficiently root cause emergent behaviors. They will engage with software development teams and warehouse design engineers to drive the evolution of the AR system, as well as the simulation engine that supports our work. Inclusive Team Culture Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have 12 affinity groups (employee resource groups) with more than 87,000 employees across hundreds of chapters around the world. We have innovative benefit offerings and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which reminds team members to seek diverse perspectives, learn and be curious, and earn trust. Flexibility It isn’t about which hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We offer flexibility and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth We care about your career growth too. Whether your goals are to explore new technologies, take on bigger opportunities, or get to the next level, we'll help you get there. Our business is growing fast and our people will grow with it. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA
CN, Shanghai
亚马逊云科技上海人工智能实验室OpenSearch 研发团队正在招募应用科学实习生-多模态检索与生成方向实习生。OpenSearch是一个开源的搜索和数据分析套件, 它旨在为数据密集型应用构建解决方案,内置高性能、开发者友好的工具,并集成了强大的机器学习、数据处理功能,可以为客户提供灵活的数据探索、丰富和可视化功能,帮助客户从复杂的数据中发现有价值的信息。OpenSearch是现有AWS托管服务(AWS OpenSearch)的基础,OpenSearch核心团队负责维护OpenSearch代码库,他们的目标是使OpenSearch安全、高效、可扩展、可扩展并永远开源。 点击下方链接查看申请手册获得更多信息: https://amazonexteu.qualtrics.com/CP/File.php?F=F_55YI0e7rNdeoB6e Key job responsibilities 在这个实习期间,你将有机会: 1. 研究最新的搜索相关性人工智能算法。 2. 探索大模型技术在数据分析与可视化上的应用。 3. 了解主流搜索引擎Lucene的原理和应用。深入了解前沿自然语言处理技术和底层索引性能调优的结合。 4. 学习亚马逊云上的各种云服务。 5. 参与产品需求讨论,提出技术实现方案。 6. 与国内外杰出的开发团队紧密合作,学习代码开发和审查的流程。 We are open to hiring candidates to work out of one of the following locations: Shanghai, CHN
CN, Shanghai
亚马逊云科技上海人工智能实验室OpenSearch 研发团队正在招募应用科学家实习,方向是服务器端开发。OpenSearch是一个开源的搜索和数据分析套件, 它旨在为数据密集型应用构建解决方案,内置高性能、开发者友好的工具,并集成了强大的机器学习、数据处理功能,可以为客户提供灵活的数据探索、丰富和可视化功能,帮助客户从复杂的数据中发现有价值的信息。OpenSearch是现有AWS托管服务(AWS OpenSearch)的基础,OpenSearch核心团队负责维护OpenSearch代码库,他们的目标是使OpenSearch安全、高效、可扩展、可扩展并永远开源。 点击下方链接查看申请手册获得更多信息: https://amazonexteu.qualtrics.com/CP/File.php?F=F_55YI0e7rNdeoB6e Key job responsibilities 在这个实习期间,你将有机会: 1. 使用Java/Kotlin等服务器端技术编写高质量,高性能,安全,可维护和可测试的代码。 2. 了解主流搜索引擎Lucene的原理和应用。 3. 学习亚马逊云上的各种云服务。 4. 参与产品需求讨论,提出技术实现方案。 5. 与国内外杰出的开发团队紧密合作,学习代码开发和审查的流程。 6. 应用先进的人工智能和机器学习技术提升用户体验。 We are open to hiring candidates to work out of one of the following locations: Shanghai, CHN
CN, Shanghai
亚马逊云科技上海人工智能实验室OpenSearch 研发团队正在招募应用科学家实习,方向是服务器端开发。OpenSearch是一个开源的搜索和数据分析套件, 它旨在为数据密集型应用构建解决方案,内置高性能、开发者友好的工具,并集成了强大的机器学习、数据处理功能,可以为客户提供灵活的数据探索、丰富和可视化功能,帮助客户从复杂的数据中发现有价值的信息。OpenSearch是现有AWS托管服务(AWS OpenSearch)的基础,OpenSearch核心团队负责维护OpenSearch代码库,他们的目标是使OpenSearch安全、高效、可扩展、可扩展并永远开源。 点击下方链接查看申请手册获得更多信息: https://amazonexteu.qualtrics.com/CP/File.php?F=F_55YI0e7rNdeoB6e Key job responsibilities 在这个实习期间,你将有机会: • 使用HTML、CSS和TypeScript/Javascript等前端技术开发用户界面。 • 学习使用Node.js 为用户界面提供服务接口。 • 了解并实践工业级前端产品的开发/部署/安全审查/发布流程。 • 了解并实践前端框架React的使用。 • 参与产品需求讨论,提出技术实现方案。 • 与国内外杰出的开发团队紧密合作,学习代码开发和审查的流程。 • 编写高质量,高性能,安全,可维护和可测试的代码。 • 应用先进的人工智能和机器学习技术提升用户体验。 We are open to hiring candidates to work out of one of the following locations: Shanghai, CHN
US, WA, Bellevue
Are you excited about developing generative AI, reinforcement learning and foundation models? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics, we are on a mission to build high-performance autonomous decision systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for an Applied Scientist who will help us build next level simulation and optimization systems with the help of generative AI and LLMs. Together, we will be pushing beyond the state of the art in simulation and optimization of one of the most complex systems in the world: Amazon's Fulfillment Network. Key job responsibilities In this role, you will dive deep into our fulfillment network, understand complex processes and channel your insights to build large scale machine learning models (LLMs, graph neural nets and reinforcement learning) that will be able to understand and optimize the state and future of our buildings, network and orders. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. You will work with and in a team of applied scientists to solve cutting edge problems going beyond the published state of the art that will drive transformative change on a truly global scale. A day in the life In this role, you will dive deep into our fulfillment network, understand complex processes and channel your insights to build large scale machine learning models (LLMs, graph neural nets and reinforcement learning) that will be able to understand and optimize the state and future of our buildings, network and orders. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. You will work with and in a team of applied scientists to solve cutting edge problems going beyond the published state of the art that will drive transformative change on a truly global scale. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technologies (AFT) powers Amazon’s global fulfillment network. We invent and deliver software, hardware, and data science solutions that orchestrate processes, robots, machines, and people. We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. The AFT AI team has deep expertise developing cutting edge AI solutions at scale and successfully applying them to business problems in the Amazon Fulfillment Network. These solutions typically utilize machine learning and computer vision techniques, applied to text, sequences of events, images or video from existing or new hardware. We influence each stage of innovation from inception to deployment, developing a research plan, creating and testing prototype solutions, and shepherding the production versions to launch. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
LU, Luxembourg
Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz Pooling Req - JKU Linz We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, WA, Seattle
Amazon is one of the most popular sites in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. Our team leads the science and analytics efforts for the search page and we own multiple aspects of understanding how we can measure customer satisfaction with our experiences. This include building science based insights and novel metrics to define and track customer focused aspects. We are working on a new measurement framework to better quantify and qualify the quality of the search customer experience and are looking for a Senior Applied Scientist to lead the development and implementation of different signals for this framework and tackle new and uncharted territories for search engines using LLMs. Key job responsibilities We are looking for an experienced Sr. Applied Scientist to lead LLM based signals development and data analytics and drive critical product decisions for Amazon Search. In a fast-paced and ambiguous environment, you will perform multiple large, complex, and business critical analyses that will inform product design and business priorities. You will design and build AI based science solutions to allow routine inspection and deep business understanding as the search customer experience is being transformed. Keeping a department-wide view, you will focus on the highest priorities and constantly look for scale and automation, while making technical trade-offs between short term and long-term needs. With your drive to deliver results, you will quickly analyze data and understand the current business challenges to assess the feasibility of different science projects as well as help shape the analytics roadmap of the Science and Analytics team for Search CX. Your desire to learn and be curious will help us look around corners for improvement opportunities and more efficient metrics development. In this role, you will partner with data engineers, business intelligence engineers, product managers, software engineers, economists, and other scientists. A day in the life You are have expertise in Machine learning and statistical models. You are comfortable with a higher degree of ambiguity, knows when and how to be scrappy, build quick prototypes and proofs of concepts, innate ability to see around corners and know what is coming, define a long-term science vision, and relish the idea of solving problems that haven’t been solved at scale. As part of our journey to learn about our data, some opportunities may be a dead end and you will balancing unknowns with delivering results for our customers. Along the way, you’ll learn a ton, have fun and make a positive impact at scale. About the team Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company and one of the world's leading internet companies. We provide a highly customer-centric, and team-oriented environment. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, MA, Westborough
The Research Team at Amazon Robotics is seeking a passionate Applied Scientist, with a strong track record of industrial research, innovation leadership, and technology transfer, with a focus on ML Applications. At Amazon Robotics, we apply cutting edge advancements in robotics, software development, Big Data, ML and AI to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We operate hundreds of buildings that employ hundreds of thousands of robots teaming up to perform sophisticated, large-scale missions. There are a lot of exciting opportunities ahead of us that can be unlocked by scientific research. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. As you could imagine, data is at the heart of our innovation. This role will be participating in creating the ML and AI roadmap, leading science initiatives, and shipping ML products. Key job responsibilities You will be responsible for: - Thinking Big and ideating with Data Science team, other Science teams, and stakeholders across the organization to co-create the ML roadmap. - Collaborating with customers and cross-functional stakeholder teams to help the team identify, disambiguate, and define key problems. - Independently innovating, creating, and iterating ML solutions for given business problems. Especially, using techniques such as Computer Vision, Deep Learning, Causal Inference, etc. - Collaborating with other Science, Tech, Ops, and Business leaders to ship and iterate ML products. - Promoting best practices and mentoring junior team members on problem solving and communication. - Leading state-of-the-art research work and pursuing internal/external scientific publications. A day in the life You will co-create ML/AI roadmap. You will help team identify business opportunities. You will prototype, iterate ML/AI solutions. You will drive communication with stakeholders to implement and ship ML solutions. e.g., computer vision, deep learning, explainable AI, causal inference, reinforcement learning, etc. You will mentor and guide junior team members in delivering projects and business impact. You will work with the team and lead scientific publications. Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team You will join a scientifically and demographically diverse research/science team. Our multi-disciplinary team includes scientists with backgrounds in planning/scheduling, grasping/manipulation, machine learning, statistical analysis, and operations research. We develop novel algorithms and machine learning models and apply them to real-word robotic warehouses, including: - Planning/coordinating the paths of thousands of robtos - Dynamic task allocation to thousands of robots. - Learning how to manipulate products sold by Amazon. - Co-designing an optimizing robotic logistics processes. Our team also serves as a hub to foster innovation and support scientists across Amazon Robotics. In addition, we coordinate research engagements with academia. We are open to hiring candidates to work out of one of the following locations: Westborough, MA, USA
US, CA, Sunnyvale
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AGI, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA