Alexa AI’s natural-language-understanding papers at ICASSP 2022

Papers focus on learning previously unseen intents and personalization, both generally and in the specific case of recipe recommendation.

The International Conference on Acoustics, Speech, and Signal Processing (ICASSP), which wrapped up late last month, focuses, as its name suggests, on applications close to the acoustic speech signal, such as automatic speech recognition and text-to-speech.

But in recent years, the line between speech processing and natural-language understanding (NLU) — which focuses on texts’ semantic content — has grown fuzzier, and Alexa AI scientists had several papers on NLU at ICASSP.

Among the most common NLU tasks are domain classification, or determining the topic of an utterance, and intent classification, or determining the speaker’s goals. Usually, NLU models are trained on data labeled according to both domain and intent.

But in “ADVIN: Automatically discovering novel domains and intents from user text utterances”, Alexa AI researchers present a new method for automatically identifying and categorizing domains and intents that an NLU model has never seen before. In the researchers’ experiments, it significantly outperformed its predecessors.

Related content
Multimodal training, signal-to-interpretation, and BERT rescoring are just a few topics covered by Amazon’s 21 speech-related papers.

In many contexts, NLU can be improved through personalization. If two different customers tell a smart device “Play funny videos”, for instance, they may have very different types of content in mind.

Personalization based on interaction histories is well studied, but in the real world, interaction histories are constantly being updated, revealing new aspects of a customer’s taste or, indeed, changes of taste. In “Incremental user embedding modeling for personalized text classification”, Alexa AI researchers present a new approach to dynamically updating personalization models to reflect recent transactions. In tests on two different datasets, the approach improved prediction accuracy by 9% and 30%, respectively, versus the state of the art.

A third Alexa AI paper, “Contrastive knowledge graph attention network for request-based recipe recommendation”, narrows in on the very particular problem of matching online recipes to customer requests. The problem with conventional machine learning approaches to recipe retrieval is that data on customer interactions with recipes is noisy and sparse.

Related content
The team’s latest research on privacy-preserving machine learning, federated learning, and bias mitigation.

The Alexa AI researchers use graphs to add structure to the data and contrastive learning to improve the resulting model’s reliability, improving on the state of the art by 5% to 7% on two different metrics and two different datasets.

Christophe Dupuy, an applied scientist in Alexa AI, described two other ICASSP papers that he coauthored, on privacy-protecting machine learning and federated learning, in a blog post we published before the conference.

Intent discovery

With voice agents like Alexa, domains are general high-level content categories, like Music or Weather, and intents are specific functions, like PlayMusic or GetTemperature.

In “ADVIN: Automatically discovering novel domains and intents from user text utterances”, the Alexa AI researchers tackle the problem of classifying previously unseen domains and intents in three stages.

In the first stage, a model simply recognizes that a dataset contains unfamiliar intents. This model is trained on labeled data for known intents and publicly available, labeled out-of-domain utterances, as a proxy for unlabeled data with unknown intents.

ADVIN model.png
The two stages of the ADVIN intent discovery model: identification of unseen intents (left) and intent clustering (right).

In the second stage, another model clusters both the labeled and unlabeled utterances, based on their semantic content. From the clusters of labeled intents, the researchers derive a threshold distance value that maximizes the model’s ability to distinguish intents. Then they apply that value to the unlabeled data, to identify clusters corresponding to new intents.

Finally, in the third stage, they repeat this process, but at a higher level of generality, clustering intents discovered in the previous stage into domains.

Dynamic personalization

Every interaction between a customer and an online service generates new data that could be used to update a profile that encodes the customer’s preferences, but it would be highly impractical to update the profile after each one of those interactions.

In “Incremental user embedding modeling for personalized text classification”, Alexa researchers instead propose keeping a running record of a customer’s most recent interactions and using that to update the customer’s preference in a dynamic way.

Personalization.png
The architecture of the dynamic-personalization model.

They present a machine learning model that takes as input the request that the NLU model is currently trying to resolve and representations of the customer’s long-term history and short-term history. An attention mechanism determines which aspects of the short-term history are most informative in light of the long-term history and vice versa.

The output of the attention mechanism is an ad hoc customer profile that the model can use to process the current request.

Recipe retrieval

“Contrastive knowledge graph attention network for request-based recipe recommendation” also addresses the question of personalization, although in the specific context of recipe recommendation — deciding which recipes to return, for instance, when the customer says, “Show me recipes for chicken breasts.”

Related content
Papers focus on speech conversion and data augmentation — and sometimes both at once.

Customers interact with recipe recommendation services in many different ways, such as browsing through recipes or checking ingredient lists. The most telling interaction, however — the one that proves that the recommended recipe met the customer’s needs — is a “cook along” service, that steps through the recipe to guide meal preparation.

Cook-along interactions are relatively rare, however, and the other types of interactions can be extremely noisy, reflecting stray clicks, misinterpretations of recipe titles, and the like. Building a reliable recipe recommendation service requires maximizing the high-value interaction data and filtering out the noise.

Graph-based models are a good way to do both, since they explicitly encode patterns in the data that would otherwise have to be inferred from training examples. The researchers begin by building a recipe graph, in which each node is a recipe, and recipes share edges if they belong to the same cuisine type, share ingredients, include related keywords, and so on.

Next, they add nodes representing customers to the graph. Edges between customer nodes and recipes indicate that customers have interacted with those recipes, and they also encode the types of interactions.

Recipe Recommender 16x9.png
The framework for training the recipe recommendation model. Nodes of the knowledge graph represents users, recipes, and attributes (u, i, and a, respectively). Graph augmentation (GA) produces synthetic positive examples, which are used to train knowledge graph attention (KGAT) networks.

Finally, they train a model to create representations of the graph nodes using contrastive learning, in which the model is trained on pairs of examples, one that belongs to the target class — say, recipes that a particular customer has interacted with — and one that doesn’t. The model learns to produce representations that push contrasting examples far apart from each other in the representation space and pull related examples together.

To produce related examples, the researchers create synthetic variations on the real examples, in which nodes or edges have been randomly dropped. This trains the model to focus on essential features of the data and ignore inessential features, so it generalizes better.

Research areas

Related content

US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, TX, Austin
Our team is involved with pre-silicon design verification for custom IP. A critical requirement of the verification flow is the requirement of legal and realistic stimulus of a custom Machine Learning Accelerator Chip. Content creation is built using formal methods that model legal behavior of the design and then solving the problem to create the specific assembly tests. The entire frame work for creating these custom tests is developed using a SMT solver and custom software code to guide the solution space into templated scenarios. This highly visible and innovative role requires the design of this solving framework and collaborating with design verification engineers, hardware architects and designers to ensure that interesting content can be created for the projects needs. Key job responsibilities Develop an understanding for a custom machine learning instruction set architecture. Model correctness of instruction streams using first order logic. Create custom API's to allow control over scheduling and randomness. Deploy algorithms to ensure concurrent code is safely constructed. Create coverage metrics to ensure solution space coverage. Use novel methods like machine learning to automate content creation. About the team Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for customers who require specialized security solutions for their cloud services. Annapurna Labs (our organization within AWS UC) designs silicon and software that accelerates innovation. Customers choose us to create cloud solutions that solve challenges that were unimaginable a short time ago—even yesterday. Our custom chips, accelerators, and software stacks enable us to take on technical challenges that have never been seen before, and deliver results that help our customers change the world. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Sunnyvale
The Region Flexibility Engineering (RFE) team builds and leverages foundational infrastructure capabilities, tools, and datasets needed to support the rapid global expansion of Amazon's SOA infrastructure. Our team focuses on robust and scalable architecture patterns and engineering best practices, driving adoption of ever-evolving and AWS technologies. RFE is looking for a passionate, results-oriented, inventive Data Scientist to refine and execute experiments towards our grand vision, influence and implement technical solutions for regional placement automation, cross-region libraries, and tooling useful for teams across Amazon. As a Data Scientist in Region Flexibility, you will work to enable Amazon businesses to leverage new AWS regions and improve the efficiency and scale of our business. Our project spans across all of Amazon Stores, Digital and Others (SDO) Businesses and we work closely with AWS teams to advise them on SDO requirements. As innovators who embrace new technology, you will be empowered to choose the right highly scalable and available technology to solve complex problems and will directly influence product design. The end-state architecture will enable services to break region coupling while retaining the ability to keep critical business functions within a region. This architecture will improve customer latency through local affinity to compute resources and reduce the blast radius in case of region failures. We leverage off the sciences of data, information processing, machine learning, and generative AI to improve user experience, automation, service resilience, and operational efficiency. Key job responsibilities As an RFE Data Scientist, you will work closely with product and technical leaders throughout Amazon and will be responsible for influencing technical decisions and building data-driven automation capabilities in areas of development/modeling that you identify as critical future region flexibility offerings. You will identify both enablers and blockers of adoption for region flex, and build models to raise the bar in terms of understanding questions related to data set and service relationships and predict the impact of region changes and provide offerings to mitigate that impact. About the team The Regional Flexibility Engineering (RFE) organization supports the rapid global expansion of Amazon's infrastructure. Our projects support Amazon businesses like Stores, Alexa, Kindle, and Prime Video. We drive adoption of ever-evolving and AWS and non-AWS technologies, and work closely with AWS teams to improve AWS public offerings. Our organization focuses on robust and scalable solutions, simple to use, and delivered with engineering best practices. We leverage and build foundational infrastructure capabilities, tools, and datasets that enable Amazon teams to delight our customers. With millions of people using Amazon’s products every day, we appreciate the importance of making our solutions “just work”.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!