A quick guide to Amazon's 65-plus papers at this year's ACL

Familiar topics such as question answering and natural-language understanding remain well represented, but a new concentration on language modeling and multimodal models reflect the spread of generative AI.

Between the main conference and the recently inaugurated ACL Proceedings, Amazon researchers have more than 65 papers at this year's meeting of the Association for Computational Linguistics (ACL).

Automatic speech recognition

Masked audio text encoders are effective multi-modal rescorers*
Jason Cai, Monica Sunkara, Xilai Li, Anshu Bhatia, Xiao Pan, Sravan Bodapati

Code generation

A static evaluation of code completion by large language models
Hantian Ding, Varun Kumar, Yuchen Tian, Zijian Wang, Rob Kwiatkowski, Xiaopeng LI, Murali Krishna Ramanathan, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth, Bing Xiang

Multitask pretraining with structured knowledge for text-to-SQL generation
Robert Giaquinto, Dejiao Zhang, Benjamin Kleiner, Yang Li, Ming Tan, Parminder Bhatia, Ramesh Nallapati, Xiaofei Ma

Code switching

Code-switched text synthesis in unseen language pairs*
I-Hung Hsu, Avik Ray, Shubham Garg, Nanyun Peng, Jing Huang

CoMix: Guide transformers to code-mix using POS structure and phonetics*
Gaurav Arora, Srujana Merugu, Vivek Sembium

Continual learning

Characterizing and measuring linguistic dataset drift
Tyler A. Chang, Kishaloy Halder, Neha Anna John, Yogarshi Vyas, Yassine Benajiba, Miguel Ballesteros, Dan Roth

Data-/table-to-text applications

An inner table retriever for robust table question answering
Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias

Few-shot data-to-text generation via unified representation and multi-source learning
Alexander Hanbo Li, Mingyue Shang, Evangelia Spiliopoulou, JIE MA, Patrick Ng, Zhiguo Wang, Bonan Min, William Wang, Kathleen McKeown, Vittorio Castelli, Dan Roth, Bing Xiang

Improving cross-task generalization of unified table-to-text models with compositional task configurations*
Jifan Chen, Yuhao Zhang, Lan Liu, Rui Dong, Xinchi Chen, Patrick Ng, William Wang, Zhiheng Huang

LI-RAGE: Late interaction retrieval augmented generation with explicit signals for open-domain table question answering
Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias

Dialogue

Diable: Efficient dialogue state tracking as operations on tables*
Pietro Lesci, Yoshinari Fujinuma, Momchil Hardalov, Chao Shang, Lluis Marquez

NatCS: Eliciting natural customer support dialogues
James Gung, Emily Moeng, Wesley Rose, Arshit Gupta, Yi Zhang, Saab Mansour

Schema-guided user satisfaction modeling for task-oriented dialogues
Yue Feng, Yunlong Jiao, Animesh Prasad, Nikolaos Aletras, Emine Yilmaz, Gabriella Kazai

Toward more accurate and generalizable evaluation metrics for task-oriented dialogs
Abi Komma, Nagesh Panyam, Timothy Leffel, Anuj Goyal, Angeliki Metallinou, Spyros Matsoukas, Aram Galstyan

Explainable AI

Efficient Shapley values estimation by amortization for text classification
Alan Yang, Fan Yin, He He, Kai-Wei Chang, Xiaofei Ma, Bing Xiang

Few shot rationale generation using self-training with dual teachers*
Aditya Srikanth Veerubhotla, Lahari Poddar, Jun Yin, Gyuri Szarvas, Sharanya Eswaran

Information extraction

An AMR-based link prediction approach for document-level event argument extraction
Yuqing Yang, Qipeng Guo, Xiangkun Hu, Yue Zhang, Qipeng Guo, Zheng Zhang

AVEN-GR: Attribute value extraction and normalization using product graphs
Donato Crisostomi, Thomas Ricatte

Large scale generative multimodal attribute extraction for e-commerce attributes
Anant Khandelwal, Happy Mittal, Shreyas Sunil Kulkarni, Deepak Gupta

ParaAMR: A large-scale syntactically diverse paraphrase dataset by AMR back-translation
Kuan-Hao Huang, Varun Iyer, I-Hung Hsu, Anoop Kumar, Kai-Wei Chang, Aram Galstyan

Weakly supervised hierarchical multi-task classification of customer questions
Jitenkumar Rana, Promod Yenigalla, Chetan Aggarwal, Sandeep Mukku, Manan Soni, Rashmi Patange

WebIE: Faithful and robust information extraction on the web
Chenxi Whitehouse, Clara Vania, Alham Fikri Aji, Christos Christodoulopoulos, Andrea Pierleoni

Information retrieval

CUPID: Curriculum learning based real-time prediction using distillation
Arindam Bhattacharya, Ankith M S, Ankit Gandhi, Vijay Huddar, Atul Saroop, Rahul Bhagat

Direct fact retrieval from knowledge graphs without entity linking
Jinheon Baek, Alham Fikri Aji, Jens Lehmann, Sung Ju Hwang

Language modeling

Adaptation approaches for nearest neighbor language models*
Rishabh Bhardwaj, George Polovets, Monica Sunkara

CONTRACLM: Contrastive learning for causal language model
Nihal Jain, Dejiao Zhang, Wasi Ahmad, Zijian Wang, Feng Nan, Xiaopeng LI, Ming Tan, Baishakhi Ray, Parminder Bhatia, Xiaofei Ma, Ramesh Nallapati, Bing Xiang

Controlled text generation with hidden representation transformations*
Vaibhav Kumar, Hana Koorehdavoudi, Masud Moshtaghi, Amita Misra, Ankit Chadha, Emilio Ferrara

KILM: Knowledge injection into encoder-decoder language models
Yan XU, Mahdi Namazifar, Devamanyu Hazarika, Aishwarya Padmakumar, Yang Liu, Dilek Hakkani-Tür

ReAugKD: Retrieval-augmented knowledge distillation for pre-trained language models
Jianyi Zhang, Aashiq Muhamed, Aditya Anantharaman, Guoyin Wang, Changyou Chen, Kai Zhong, Qingjun Cui, Yi Xu, Belinda Zeng, Trishul Chilimbi, Yiran Chen

Recipes for sequential pre-training of multilingual encoder and seq2seq models*
Saleh Soltan, Andy Rosenbaum, Tobias Falke, Qin Lu, Anna Rumshisky, Wael Hamza

Rethinking the role of scale for in-context learning: An interpretability-based case study at 66 billion scale
Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, Dan Roth

Machine learning

Mitigating the burden of redundant datasets via batch-wise unique samples and frequency-aware losses
Donato Crisostomi, Andrea Caciolai, Alessandro Pedrani, Alessandro Manzotti, Enrico Palumbo, Kay Rottmann, Davide Bernardi

Machine translation

RAMP: Retrieval and attribute-marking enhanced prompting for attribute-controlled translation
Gabriele Sarti, Phu Mon Htut, Xing Niu, Benjamin Hsu, Anna Currey, Georgiana Dinu, Maria Nădejde

Multimodal models

Benchmarking diverse-modal entity linking with generative models*
Sijia Wang, Alexander Li, Henry Zhu, Sheng Zhang, Pramuditha Perera, Chung-Wei Hang, JIE MA, William Wang, Zhiguo Wang, Vittorio Castelli, Bing Xiang, Patrick Ng

Generate then select: Open-ended visual question answering guided by world knowledge*
Xingyu Fu, Sheng Zhang, Gukyeong Kwon, Pramuditha Perera, Henry Zhu, Yuhao Zhang, Alexander Hanbo Li, William Wang, Zhiguo Wang, Vittorio Castelli, Patrick Ng, Dan Roth, Bing Xiang

KG-FLIP: Knowledge-guided fashion-domain language-image pre-training for e-commerce
Qinjin Jia, Yang Liu, Shaoyuan Xu, Huidong Liu, Daoping Wu, Jinmiao Fu, Roland Vollgraf, Bryan Wang

Resolving ambiguities in text-to-image generative models
Ninareh Mehrabi, Palash Goyal, Apurv Verma, Jwala Dhamala, Varun Kumar, Qian Hu, Kai-Wei Chang, Richard Zemel, Aram Galstyan, Rahul Gupta

Translation-enhanced multilingual text-to-image generation
Yaoyiran Li, Ching-Yun (Frannie) Chang, Stephen Rawls, Ivan Vulić, Anna Korhonen

Unsupervised melody-to-lyric generation
Yufei Tian, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Chenyang Tao, Gunnar Sigurdsson, Wenbo Zhao, Tagyoung Chung, Jing Huang, Violet Peng

Natural-language processing

Multi-VALUE: A framework for cross-dialectal English NLP
Caleb Ziems, William Held, Jingfeng Yang, Jwala Dhamala, Rahul Gupta, Diyi Yang

vONTSS: vMF based semi-supervised neural topic modeling with optimal transport*
Weijie Xu, Xiaoyu Jiang, Srinivasan Sengamedu, "SHS", Francis Iannacci, Jinjin Zhao

Natural-language understanding

ECG-QALM: Entity-controlled synthetic text generation using contextual Q&A for NER*
Karan Aggarwal, Henry Jin, Aitzaz Ahmad

Entity contrastive learning in a large-scale virtual assistant system
Jonathan Rubin, Jason Crowley, George Leung, Morteza Ziyadi, Maria Minakova

EPIC: Multi-perspective annotation of a corpus of irony
Simona Frenda, Alessandro Pedrani, Valerio Basile, Soda Marem Lo, Alessandra Teresa Cignarella, Raffaella Panizzon, Cristina Marco, Bianca Scarlini, Viviana Patti, Cristina Bosco, Davide Bernardi

Measuring and mitigating local instability in deep neural networks*
Arghya Datta, Subhrangshu Nandi, Jingcheng Xu, Greg Ver Steeg, He Xie, Anoop Kumar, Aram Galstyan

Reducing cohort bias in natural language understanding systems with targeted self-training scheme
Thu Le, Gabriela Cortes Hernandez, Bei Chen, Melanie Bradford

Privacy

Controlling the extraction of memorized data from large language models via prompt-tuning
Mustafa Ozdayi, Charith Peris, Jack G. M. FitzGerald, Christophe Dupuy, Jimit Majmudar, Haidar Khan, Rahil Parikh, Rahul Gupta

Query rewriting

Context-aware query rewriting for improving users’ search experience on e-commerce websites
Simiao Zuo, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin, Chao Zhang, Tuo Zhao

Unified contextual query rewriting
Yingxue Zhou, Jie Hao, Mukund Rungta, Yang Liu, Eunah Cho, Xing Fan, Yanbin Lu, Vishal Vasudevan, Kellen Gillespie, Zeynab Raeesy, Sawyer Shen, Edward Guo, Gokhan Tur

Question answering

Accurate training of web-based question answering systems with feedback from ranked users
Liang Wang, Ivano Lauriola, Alessandro Moschitti

Context-aware transformer pre-training for answer sentence selection
Luca Di Liello, Siddhant Garg, Alessandro Moschitti

Cross-Lingual Knowledge Distillation for answer sentence selection in low-resource languages*
Shivanshu Gupta, Yoshitomo Matsubara, Ankit Chadha, Alessandro Moschitti

Exploiting abstract meaning representation for open-domain question answering*
Cunxiang Wang, Zhikun Xu, Qipeng Guo, Xiangkun Hu, Xuefeng Bai, Zheng Zhang, Yue Zhang

Hybrid hierarchical retrieval for open-domain question answering*
Manoj Ghuhan Arivazhagan, Lan Liu, Peng Qi, Xinchi Chen, William Wang, Zhiheng Huang

Learning answer generation using supervision from automatic question answering evaluators
Matteo Gabburo, Siddhant Garg, Rik Koncel-Kedziorski, Alessandro Moschitti

RobustQA: Benchmarking the robustness of domain adaptation for open-domain question answering*
Rujun Han, Peng Qi, Yuhao Zhang, Lan Liu, Juliette Burger, William Wang, Zhiheng Huang, Bing Xiang, Dan Roth

Reasoning

FolkScope: Intention knowledge graph construction for e-commerce commonsense discovery*
Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, Bing Yin

SCOTT: Self-consistent chain-of-thought distillation
Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, Xiang Ren

Self-learning

Constrained policy optimization for controlled self-learning in conversational AI systems
Mohammad Kachuee, Sungjin Lee

Scalable and safe remediation of defective actions in self-learning conversational systems
Sarthak Ahuja, Mohammad Kachuee, Fateme Sheikholeslami, Weiqing Liu, Jae Do

Semantic parsing

An empirical analysis of leveraging knowledge for low-resource task-oriented semantic parsing*
Mayank Kulkarni, Aoxiao Zhong, Nicolas Guenon Des Mesnards, Sahar Movaghati, Mukund Harakere, He Xie, Jianhua Lu

XSEMPLR: Cross-lingual semantic parsing in multiple natural languages and meaning representations
Yusen Zhang, Jun Wang, Zhiguo Wang, Rui Zhang

Spoken-language understanding

Regression-free model updates for spoken language understanding
Andrea Caciolai, Verena Weber, Tobias Falke, Alessandro Pedrani, Davide Bernardi

Sharing encoder representations across languages, domains and tasks in large-scale spoken language understanding
Jonathan Hueser, Judith Gaspers, Thomas Gueudre, Chandana Satya Prakash, Jin Cao, Daniil Sorokin, Quynh Do, Nicolas Anastassacos, Tobias Falke, Turan Gojayev, Mariusz Momotko, Denis Romasanta Rodriguez, Austin Doolittle, Kartik Balasubramaniam, Wael Hamza, Fabian Triefenbach, Patrick Lehnen

Toxic-language classification

QCon at SemEval-2023 Task 10: Data augmentation and model ensembling for detection of online sexism
Wes Feely, Prabhakar Gupta, Manas Mohanty, Tim Chon, Tuhin Kundu, Vijit Singh, Sandeep Atluri, Tanya Roosta, Viviane Ghaderi, Peter Schulam, Heba Elfardy

Towards building a robust toxicity predictor
Dmitriy Bespalov, Sourav Bhabesh, Yi Xiang, Yanjun (Jane) Qi

*Accepted to ACL Findings

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Santa Clara
Amazon Q Business is an AI assistant powered by generative technology. It provides capabilities such as answering queries, summarizing information, generating content, and executing tasks based on enterprise data. We are seeking a Language Data Scientist II to join our data team. Our mission is to engineer high-quality datasets that are essential to the success of Amazon Q Business. From human evaluations and Responsible AI safeguards to Retrieval-Augmented Generation and beyond, our work ensures that Generative AI is enterprise-ready, safe, and effective for users. As part of our diverse team—including language engineers, linguists, data scientists, data engineers, and program managers—you will collaborate closely with science, engineering, and product teams. We are driven by customer obsession and a commitment to excellence. In this role, you will leverage data-centric AI principles to assess the impact of data on model performance and the broader machine learning pipeline. You will apply Generative AI techniques to evaluate how well our data represents human language and conduct experiments to measure downstream interactions. Key job responsibilities * oversee end-to-end evaluation data pipeline and propose evaluation metrics and methods * incorporate your knowledge of linguistic fundamentals, NLU, NLP to the data pipeline * process and analyze diverse media formats including audio recordings, video, images and text * perform statistical analysis of the data * write intuitive data generation & annotation guidelines * write advanced and nuanced prompts to optimize LLM outputs * write python scripts for data wrangling * automate repetitive workflows and improve existing processes * perform background research and vet available public datasets on topics such as long text retrieval, text generation, summarization, question-answering, and reasoning * leverage and integrate AWS services to optimize data collection workflows * collaborate with scientists, engineers, and product managers in defining data quality metrics and guidelines. * lead dive deep sessions with data annotators About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE