A quick guide to Amazon's 65-plus papers at this year's ACL

Familiar topics such as question answering and natural-language understanding remain well represented, but a new concentration on language modeling and multimodal models reflect the spread of generative AI.

Between the main conference and the recently inaugurated ACL Proceedings, Amazon researchers have more than 65 papers at this year's meeting of the Association for Computational Linguistics (ACL).

Automatic speech recognition

Masked audio text encoders are effective multi-modal rescorers*
Jason Cai, Monica Sunkara, Xilai Li, Anshu Bhatia, Xiao Pan, Sravan Bodapati

Code generation

A static evaluation of code completion by large language models
Hantian Ding, Varun Kumar, Yuchen Tian, Zijian Wang, Rob Kwiatkowski, Xiaopeng LI, Murali Krishna Ramanathan, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth, Bing Xiang

Multitask pretraining with structured knowledge for text-to-SQL generation
Robert Giaquinto, Dejiao Zhang, Benjamin Kleiner, Yang Li, Ming Tan, Parminder Bhatia, Ramesh Nallapati, Xiaofei Ma

Code switching

Code-switched text synthesis in unseen language pairs*
I-Hung Hsu, Avik Ray, Shubham Garg, Nanyun Peng, Jing Huang

CoMix: Guide transformers to code-mix using POS structure and phonetics*
Gaurav Arora, Srujana Merugu, Vivek Sembium

Continual learning

Characterizing and measuring linguistic dataset drift
Tyler A. Chang, Kishaloy Halder, Neha Anna John, Yogarshi Vyas, Yassine Benajiba, Miguel Ballesteros, Dan Roth

Data-/table-to-text applications

An inner table retriever for robust table question answering
Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias

Few-shot data-to-text generation via unified representation and multi-source learning
Alexander Hanbo Li, Mingyue Shang, Evangelia Spiliopoulou, JIE MA, Patrick Ng, Zhiguo Wang, Bonan Min, William Wang, Kathleen McKeown, Vittorio Castelli, Dan Roth, Bing Xiang

Improving cross-task generalization of unified table-to-text models with compositional task configurations*
Jifan Chen, Yuhao Zhang, Lan Liu, Rui Dong, Xinchi Chen, Patrick Ng, William Wang, Zhiheng Huang

LI-RAGE: Late interaction retrieval augmented generation with explicit signals for open-domain table question answering
Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias

Dialogue

Diable: Efficient dialogue state tracking as operations on tables*
Pietro Lesci, Yoshinari Fujinuma, Momchil Hardalov, Chao Shang, Lluis Marquez

NatCS: Eliciting natural customer support dialogues
James Gung, Emily Moeng, Wesley Rose, Arshit Gupta, Yi Zhang, Saab Mansour

Schema-guided user satisfaction modeling for task-oriented dialogues
Yue Feng, Yunlong Jiao, Animesh Prasad, Nikolaos Aletras, Emine Yilmaz, Gabriella Kazai

Toward more accurate and generalizable evaluation metrics for task-oriented dialogs
Abi Komma, Nagesh Panyam, Timothy Leffel, Anuj Goyal, Angeliki Metallinou, Spyros Matsoukas, Aram Galstyan

Explainable AI

Efficient Shapley values estimation by amortization for text classification
Alan Yang, Fan Yin, He He, Kai-Wei Chang, Xiaofei Ma, Bing Xiang

Few shot rationale generation using self-training with dual teachers*
Aditya Srikanth Veerubhotla, Lahari Poddar, Jun Yin, Gyuri Szarvas, Sharanya Eswaran

Information extraction

An AMR-based link prediction approach for document-level event argument extraction
Yuqing Yang, Qipeng Guo, Xiangkun Hu, Yue Zhang, Qipeng Guo, Zheng Zhang

AVEN-GR: Attribute value extraction and normalization using product graphs
Donato Crisostomi, Thomas Ricatte

Large scale generative multimodal attribute extraction for e-commerce attributes
Anant Khandelwal, Happy Mittal, Shreyas Sunil Kulkarni, Deepak Gupta

ParaAMR: A large-scale syntactically diverse paraphrase dataset by AMR back-translation
Kuan-Hao Huang, Varun Iyer, I-Hung Hsu, Anoop Kumar, Kai-Wei Chang, Aram Galstyan

Weakly supervised hierarchical multi-task classification of customer questions
Jitenkumar Rana, Promod Yenigalla, Chetan Aggarwal, Sandeep Mukku, Manan Soni, Rashmi Patange

WebIE: Faithful and robust information extraction on the web
Chenxi Whitehouse, Clara Vania, Alham Fikri Aji, Christos Christodoulopoulos, Andrea Pierleoni

Information retrieval

CUPID: Curriculum learning based real-time prediction using distillation
Arindam Bhattacharya, Ankith M S, Ankit Gandhi, Vijay Huddar, Atul Saroop, Rahul Bhagat

Direct fact retrieval from knowledge graphs without entity linking
Jinheon Baek, Alham Fikri Aji, Jens Lehmann, Sung Ju Hwang

Language modeling

Adaptation approaches for nearest neighbor language models*
Rishabh Bhardwaj, George Polovets, Monica Sunkara

CONTRACLM: Contrastive learning for causal language model
Nihal Jain, Dejiao Zhang, Wasi Ahmad, Zijian Wang, Feng Nan, Xiaopeng LI, Ming Tan, Baishakhi Ray, Parminder Bhatia, Xiaofei Ma, Ramesh Nallapati, Bing Xiang

Controlled text generation with hidden representation transformations*
Vaibhav Kumar, Hana Koorehdavoudi, Masud Moshtaghi, Amita Misra, Ankit Chadha, Emilio Ferrara

KILM: Knowledge injection into encoder-decoder language models
Yan XU, Mahdi Namazifar, Devamanyu Hazarika, Aishwarya Padmakumar, Yang Liu, Dilek Hakkani-Tür

ReAugKD: Retrieval-augmented knowledge distillation for pre-trained language models
Jianyi Zhang, Aashiq Muhamed, Aditya Anantharaman, Guoyin Wang, Changyou Chen, Kai Zhong, Qingjun Cui, Yi Xu, Belinda Zeng, Trishul Chilimbi, Yiran Chen

Recipes for sequential pre-training of multilingual encoder and seq2seq models*
Saleh Soltan, Andy Rosenbaum, Tobias Falke, Qin Lu, Anna Rumshisky, Wael Hamza

Rethinking the role of scale for in-context learning: An interpretability-based case study at 66 billion scale
Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, Dan Roth

Machine learning

Mitigating the burden of redundant datasets via batch-wise unique samples and frequency-aware losses
Donato Crisostomi, Andrea Caciolai, Alessandro Pedrani, Alessandro Manzotti, Enrico Palumbo, Kay Rottmann, Davide Bernardi

Machine translation

RAMP: Retrieval and attribute-marking enhanced prompting for attribute-controlled translation
Gabriele Sarti, Phu Mon Htut, Xing Niu, Benjamin Hsu, Anna Currey, Georgiana Dinu, Maria Nădejde

Multimodal models

Benchmarking diverse-modal entity linking with generative models*
Sijia Wang, Alexander Li, Henry Zhu, Sheng Zhang, Pramuditha Perera, Chung-Wei Hang, JIE MA, William Wang, Zhiguo Wang, Vittorio Castelli, Bing Xiang, Patrick Ng

Generate then select: Open-ended visual question answering guided by world knowledge*
Xingyu Fu, Sheng Zhang, Gukyeong Kwon, Pramuditha Perera, Henry Zhu, Yuhao Zhang, Alexander Hanbo Li, William Wang, Zhiguo Wang, Vittorio Castelli, Patrick Ng, Dan Roth, Bing Xiang

KG-FLIP: Knowledge-guided fashion-domain language-image pre-training for e-commerce
Qinjin Jia, Yang Liu, Shaoyuan Xu, Huidong Liu, Daoping Wu, Jinmiao Fu, Roland Vollgraf, Bryan Wang

Resolving ambiguities in text-to-image generative models
Ninareh Mehrabi, Palash Goyal, Apurv Verma, Jwala Dhamala, Varun Kumar, Qian Hu, Kai-Wei Chang, Richard Zemel, Aram Galstyan, Rahul Gupta

Translation-enhanced multilingual text-to-image generation
Yaoyiran Li, Ching-Yun (Frannie) Chang, Stephen Rawls, Ivan Vulić, Anna Korhonen

Unsupervised melody-to-lyric generation
Yufei Tian, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Chenyang Tao, Gunnar Sigurdsson, Wenbo Zhao, Tagyoung Chung, Jing Huang, Violet Peng

Natural-language processing

Multi-VALUE: A framework for cross-dialectal English NLP
Caleb Ziems, William Held, Jingfeng Yang, Jwala Dhamala, Rahul Gupta, Diyi Yang

vONTSS: vMF based semi-supervised neural topic modeling with optimal transport*
Weijie Xu, Xiaoyu Jiang, Srinivasan Sengamedu, "SHS", Francis Iannacci, Jinjin Zhao

Natural-language understanding

ECG-QALM: Entity-controlled synthetic text generation using contextual Q&A for NER*
Karan Aggarwal, Henry Jin, Aitzaz Ahmad

Entity contrastive learning in a large-scale virtual assistant system
Jonathan Rubin, Jason Crowley, George Leung, Morteza Ziyadi, Maria Minakova

EPIC: Multi-perspective annotation of a corpus of irony
Simona Frenda, Alessandro Pedrani, Valerio Basile, Soda Marem Lo, Alessandra Teresa Cignarella, Raffaella Panizzon, Cristina Marco, Bianca Scarlini, Viviana Patti, Cristina Bosco, Davide Bernardi

Measuring and mitigating local instability in deep neural networks*
Arghya Datta, Subhrangshu Nandi, Jingcheng Xu, Greg Ver Steeg, He Xie, Anoop Kumar, Aram Galstyan

Reducing cohort bias in natural language understanding systems with targeted self-training scheme
Thu Le, Gabriela Cortes Hernandez, Bei Chen, Melanie Bradford

Privacy

Controlling the extraction of memorized data from large language models via prompt-tuning
Mustafa Ozdayi, Charith Peris, Jack G. M. FitzGerald, Christophe Dupuy, Jimit Majmudar, Haidar Khan, Rahil Parikh, Rahul Gupta

Query rewriting

Context-aware query rewriting for improving users’ search experience on e-commerce websites
Simiao Zuo, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin, Chao Zhang, Tuo Zhao

Unified contextual query rewriting
Yingxue Zhou, Jie Hao, Mukund Rungta, Yang Liu, Eunah Cho, Xing Fan, Yanbin Lu, Vishal Vasudevan, Kellen Gillespie, Zeynab Raeesy, Sawyer Shen, Edward Guo, Gokhan Tur

Question answering

Accurate training of web-based question answering systems with feedback from ranked users
Liang Wang, Ivano Lauriola, Alessandro Moschitti

Context-aware transformer pre-training for answer sentence selection
Luca Di Liello, Siddhant Garg, Alessandro Moschitti

Cross-Lingual Knowledge Distillation for answer sentence selection in low-resource languages*
Shivanshu Gupta, Yoshitomo Matsubara, Ankit Chadha, Alessandro Moschitti

Exploiting abstract meaning representation for open-domain question answering*
Cunxiang Wang, Zhikun Xu, Qipeng Guo, Xiangkun Hu, Xuefeng Bai, Zheng Zhang, Yue Zhang

Hybrid hierarchical retrieval for open-domain question answering*
Manoj Ghuhan Arivazhagan, Lan Liu, Peng Qi, Xinchi Chen, William Wang, Zhiheng Huang

Learning answer generation using supervision from automatic question answering evaluators
Matteo Gabburo, Siddhant Garg, Rik Koncel-Kedziorski, Alessandro Moschitti

RobustQA: Benchmarking the robustness of domain adaptation for open-domain question answering*
Rujun Han, Peng Qi, Yuhao Zhang, Lan Liu, Juliette Burger, William Wang, Zhiheng Huang, Bing Xiang, Dan Roth

Reasoning

FolkScope: Intention knowledge graph construction for e-commerce commonsense discovery*
Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, Bing Yin

SCOTT: Self-consistent chain-of-thought distillation
Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, Xiang Ren

Self-learning

Constrained policy optimization for controlled self-learning in conversational AI systems
Mohammad Kachuee, Sungjin Lee

Scalable and safe remediation of defective actions in self-learning conversational systems
Sarthak Ahuja, Mohammad Kachuee, Fateme Sheikholeslami, Weiqing Liu, Jae Do

Semantic parsing

An empirical analysis of leveraging knowledge for low-resource task-oriented semantic parsing*
Mayank Kulkarni, Aoxiao Zhong, Nicolas Guenon Des Mesnards, Sahar Movaghati, Mukund Harakere, He Xie, Jianhua Lu

XSEMPLR: Cross-lingual semantic parsing in multiple natural languages and meaning representations
Yusen Zhang, Jun Wang, Zhiguo Wang, Rui Zhang

Spoken-language understanding

Regression-free model updates for spoken language understanding
Andrea Caciolai, Verena Weber, Tobias Falke, Alessandro Pedrani, Davide Bernardi

Sharing encoder representations across languages, domains and tasks in large-scale spoken language understanding
Jonathan Hueser, Judith Gaspers, Thomas Gueudre, Chandana Satya Prakash, Jin Cao, Daniil Sorokin, Quynh Do, Nicolas Anastassacos, Tobias Falke, Turan Gojayev, Mariusz Momotko, Denis Romasanta Rodriguez, Austin Doolittle, Kartik Balasubramaniam, Wael Hamza, Fabian Triefenbach, Patrick Lehnen

Toxic-language classification

QCon at SemEval-2023 Task 10: Data augmentation and model ensembling for detection of online sexism
Wes Feely, Prabhakar Gupta, Manas Mohanty, Tim Chon, Tuhin Kundu, Vijit Singh, Sandeep Atluri, Tanya Roosta, Viviane Ghaderi, Peter Schulam, Heba Elfardy

Towards building a robust toxicity predictor
Dmitriy Bespalov, Sourav Bhabesh, Yi Xiang, Yanjun (Jane) Qi

*Accepted to ACL Findings

Research areas

Related content

US, WA, Seattle
The People eXperience and Technology (PXT) Central Science Team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms, process improvements and products, which simultaneously improve Amazon and the lives, wellbeing, and the value of work of Amazonians. We are an interdisciplinary team which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We invest in innovation and rapid prototyping of scientific models, AI/ML technologies and software solutions to accelerate informed, accurate, and reliable decision backed by science and data. As a research scientist you will you will design and carry out surveys to address business questions; analyze survey and other forms of data with regression models; perform weighting and multiple imputation to reduce bias due to nonresponse. You will conduct methodological and statistical research to understand the quality of survey data. You will work with economists, engineers, and computer scientists to select samples, draft and test survey questions, calculate nonresponse adjusted weights, and estimate regression models on large scale data. You will evaluate, diagnose, understand, and surface drivers and moderators for key research streams, including (but are not limited to) attrition, engagement, productivity, inclusion, and Amazon culture. Key job responsibilities Help to design and execute a scalable global content development and validation strategy to drive more effective decisions and improve the employee experience across all of Amazon Conduct psychometric and econometric analyses to evaluate integrity and practical application of survey questions and data Identify and execute research streams to evaluate how to mitigate or remove sources of measurement error Partner closely and drive effective collaborations across multi-disciplinary research and product teams Manage full life cycle of large-scale research programs (Develop strategy, gather requirements, manage and execute)
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs. - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. About the team It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experiences of Amazon customers worldwide. Your work will directly impact our customers in the form of products and services that make use of language and multimodal technology!
US, WA, Seattle
Are you excited about developing foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for collaborative scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking an experienced and senior Applied Scientist to focus on computer vision machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.
US, WA, Seattle
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life We thrive on solving challenging problems to innovate for our customers. By pushing the boundaries of technology, we create unparalleled experiences that enable us to rapidly adapt in a dynamic environment. Our decisions are guided by data, and we collaborate with engineering, science, and product teams to foster an innovative learning environment. If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits Summary: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team Join our team of scientists and engineers who develop and deploy LLM-based Conversational AI systems to enhance Amazon's customer service experience and effectiveness. We work on innovative solutions that help customers solve their issues and get their questions answered efficiently, and associate-facing products that support our customer service associate workforce.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is critical to the algorithms that power the recommendation, search, and ranking systems. It's also critical to making decisions, especially working on systems that are themselves data-driven. As a Senior Data Scientist on the CDML team, you'll be responsible for helping drive improvements to the machine learning systems as well as analytics to drive decision-making. While there is a team of Applied Scientists building and shipping the algorithms themselves, data science can help improve these systems directly. In this role, you can identify and build new signals to input into the models. We're also working on the value model that the algorithm optimizes, and your input will be critical to understanding the tradeoffs and balancing multiple objectives in a scientific way. We also still have big unanswered analytics questions to solve. How often do viewers just want to get to the content they already know they want to watch, and when are they open to exploring new channels? These are the sorts of questions you'll be tackling. You Will - Inform product strategies by defining and updating core metrics for each initiative - Estimate the opportunity sizing of new features the team could take on - Identify and build new signals to incorporate into the algorithms driving recommendations, search, and feed ranking at Twitch - Identify metric tradeoff ratios that help inform value model choices, long-term impact from early-growth-funnel users, and other product decisions - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Design A/B experiments to drive product direction with iterative innovation and measurement - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Are you seeking an environment where you can drive innovation? WW Amazon Stores Finance Science (ASFS) works to leverage science and economics to drive improved financial results, foster data backed decisions, and embed science within Finance. ASFS is focused on developing products that empower controllership, improve financial planning by understanding financial drivers, and innovate science capabilities for efficiency and scale. Our team owns sophisticated science capabilities for forecasting the WW Amazon Stores P&L, focusing on costs and the bottomline (profitability). We are looking for an outstanding Senior economist to lead new high visibility initiatives for forecasting the WW Amazon Stores P&L (focusing on costs and the bottomline). The forecasting models will be used to enable better financial planning and decision making for senior leadership up to VP level. You will build new econometric models from the ground up. The role will develop new driver based forecasting models for Retail related P&L lines that incorporate business drivers. The Sr Economist will also help generate new insights on how macroeconomic factors impact the P&L. This role will have very high visibility with senior leadership up to VP level. We prize creative problem solvers with the ability to draw on an expansive methodological toolkit to transform financial planning and decision-making through economics. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable owning and extracting insights from data. You are excited to learn from and alongside seasoned scientists, engineers, economists, and business leaders. You are an excellent communicator and effectively translate technical findings into business action.
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key focus areas include: 1. Task-Oriented Dialog Systems: Building reliable, scalable, and adaptive LLM-based agents for understanding intents, determining eligibilities, making API calls, confirming outcomes, and exploring alternatives across hundreds of customer service intents, while adapting to changing policies. 2. Lifelong Learning: Researching continuous learning approaches for injecting new domain knowledge while retaining the model's foundational abilities and prevent catastrophic forgetting. 3. Agentic Systems: Developing a modular agentic framework to handle multi domain conversations through appropriate system abstractions. 4. Complex Multi-turn Instruction Following: Identifying approaches to guarantee compliance with instructions that specify standard operating procedures for handling multi-turn complex scenarios. 5. Inference-Time Adaptability: Researching inference-time scaling methods and improving in-context learning abilities of custom models to enable real-time adaptability to new features, actions, or bug fixes without solely relying on retraining. 6. Context Adherence: Exploring methods to ground responses in specific customer attributes, account information, and behavioral data to prevent hallucinations and ensure high-fidelity responses. 7. Policy Grounding: Investigating techniques to align bot behavior with evolving company policies by grounding on complex, unstructured policy documents, ensuring consistent and compliant actions. 1. End to End Dialog Policy Optimization: Researching alignment approaches to optimize successful dialog completions. 2. Scalable Evaluations: Developing automated approaches to evaluate quality of experience, and correctness of agentic resolutions Key job responsibilities 1. Research and development of LLM-based chatbots and conversational AI systems for customer service applications. 2. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. 3. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. 5. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. 6. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. 7. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field.