Alexa Prize TaskBot Challenge Finals

Alexa Prize TaskBot Challenge

Three top performers emerge in inaugural Alexa Prize TaskBot Challenge—the first conversational AI challenge to incorporate multimodal (voice and vision) customer experiences.

Three university teams have emerged as top performers in the inaugural Alexa Prize TaskBot Challenge.

Launched in March 2021, the TaskBot Challenge involved ten university teams who competed to develop bots that could assist customers in completing cooking or do-it-yourself home improvement tasks that required multiple steps and decisions.

The teams’ goal: build taskbots that assist customers in multi-step tasks, such as baking a birthday cake or fixing a scratch on a car — and adapt those instructions based on the resources and tools available to the customer. If, for example, a customer ran out of an ingredient halfway through a recipe or didn’t have a specific tool for a DIY project, the taskbot had to adjust the plan and suggest possible solutions.

Customers interacted with the taskbots by saying, “Alexa, let’s work together”. That prompt initiated an interaction with one of ten taskbots. After the interaction ended, customers were asked to rate — on a scale from 1 to 5 — how helpful that taskbot was with the task.

“This challenge was motivated by our north star that Alexa will keep inventing next-generation conversational AI experiences that address our customers’ changing needs,” said Yoelle Maarek, vice president of research and science, Alexa Shopping. “Congratulations to our top-performing teams, and to all of the teams who participated in this inaugural challenge. We were delighted with the high level of engagement from the academic community, and by the advances the teams made against the research directions established for the challenge.”

The TaskBot Challenge is the first conversational AI challenge to incorporate multimodal customer experiences; in addition to receiving verbal instructions, customers were also presented with images or diagrams to guide them through the task.

Success required the teams to address many difficult AI challenges, from knowledge representation and inference, and commonsense and causal reasoning, to language understanding and generation, requiring fusion of multiple AI techniques.

The GRILL team from the University of Glasgow consists of, left to right, Iain Mackie, Federico Rossetto (pictured on tablet), Paul Owoicho (standing), Carlos Gemmell, Jeff Dalton (standing), and Sophie Fischer.
The GRILL team from the University of Glasgow consists of, left to right, Iain Mackie, Federico Rossetto (pictured on tablet), Paul Owoicho (standing), Carlos Gemmell, Jeff Dalton (standing), and Sophie Fischer.

Each of the ten teams participating in the challenge received $250,000 research grants, Alexa-enabled devices, free Amazon Web Services cloud computing services to support their research and development efforts, access to the TaskBot Toolkit, other data resources, and Alexa team support.

Five teams were selected for the finals earlier this year.

NOVA School of Science and Technology - Team TWIZ team photos
The team from NOVA School of Science and Technology (FCT NOVA) in Portugal earned second place with their bot, TWIZ.

GRILLBot, a “multi-modal task-oriented digital assistant to guide users through complex real-world tasks” developed by a team of graduate students at the University of Glasgow, emerged as the winner of the challenge.

A team from the NOVA School of Science and Technology (FCT NOVA)  in Portugal earned second place with their bot, Twiz, and a team from Ohio State University (OSU) earned third-place honors with its TacoBot. The finalists also included QuakerBot from the University of Pennsylvania (UPenn) and GauchoBot from the University of California, Santa Barbara (UCSB).

The top performers earned prize money to be divided among the team members: $500,000 for first place, $100,000 for second, and $50,000 for third.

“The experience of taking the ambitious Alexa Prize TaskBot goals from ideas and research to prototype and launching on a tight timeline was thrilling and humbling,” said Federico Rossetto, a PhD student and one of the GRILL team members.

The Ohio State Universiy TacoBot team consists of, left to right, top row: Zhen Wang and Samuel Stevens;  second row: Tianshu Zhang, Shijie Chen, and Yu Su; third row: Lingbo Mo, Xiang Yue, Xiang Deng; and bottom row: Ashley Lewis, Ziru Chen, and Huan Sun.
The Ohio State Universiy TacoBot team consists of, left to right, top row: Zhen Wang and Samuel Stevens; second row: Tianshu Zhang, Shijie Chen, and Yu Su; third row: Lingbo Mo, Xiang Yue, Xiang Deng; and bottom row: Ashley Lewis, Ziru Chen, and Huan Sun.

Another GRILLBot team member said the team realized it was essential to provide a wide variety of images and videos that help illustrate the techniques involved in each task.

“We learned that users learn and enjoy a task more when there are rich image and video elements,” said Iain Mackie, a PhD student. To do that, the students relied on image and video augmentations, applying multimedia elements that could be reusable across different tasks.

“Ultimately, the goal of taskbots is one shared by the research vision from our research lab: to enable people to understand the world and make people's lives better,” said Carlos Gemmell, GRILLBot’s project leader.

TWIZ, the taskbot developed by the FCT NOVA team, introduced an element of curiosity to the challenge. The bot would mention curious facts related to the tasks being performed, which increased customer engagement.

One of the lessons learned by the team was the limits of some algorithms when faced with human unpredictability.

“Transformer-based algorithms work extremely well in controlled settings, but in conversational settings it is natural for users to ramble until they find what they really want,” noted Rafael Ferreira, a PhD student and FCT NOVA‘s team leader. “This creates many new exploratory behaviors which can lead to conversations that must be fun and engaging.”

OSU TacoBot team members said they learned about the importance of user experience in developing real-life dialogue systems.

“User engagement is a key aspect to consider in developing taskbots. Instead of only focusing on the task, users seem to have an interest in having a chit-chat with the bot from time to time. How to naturally transition between chit-chat and task-oriented turns requires prolonged efforts,” said Huan Sun, an associate computer science and engineering professor at OSU, who served as the team’s faculty advisor.

All 10 teams participating in the competition have published research papers detailing their work.

“The TaskBot Challenge, launched last year, is among three Alexa Prize challenges,” explained Reza Ghanadan, a senior principal research scientist who oversees Amazon’s Alexa Prize competitions. “Our original Alexa Prize competition, SocialBot Grand Challenge, just completed its fourth challenge and we plan to announce the next competition, SGC5, in late June 2022, and earlier this year we introduced the SimBot Challenge, which will soon enter its live interactions phase with ten university teams competing. We are excited about how each of these challenges is contributing to the advancement of human-computer interactions through conversations.”

The inaugural TaskBot Challenge was the first of three that will occur over a three-year period. The second challenge will launch in September 2022. Alexa customers can still interact with the winning taskbots by saying, “Alexa, let’s work together”.

Latest news

The latest updates, stories, and more about Alexa Prize.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Some knowledge of econometrics, as well as basic familiarity with Stata or R is necessary, and experience with SQL, Hadoop, Spark and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Boston
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics, a wholly owned subsidiary of Amazon.com, empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. AR is seeking uniquely talented and motivated data scientists to join our Global Services and Support (GSS) Tools Team. GSS Tools focuses on improving the supportability of the Amazon Robotics solutions through automation, with the explicit goal of simplifying issue resolution for our global network of Fulfillment Centers. The candidate will work closely with software engineers, Fulfillment Center operation teams, system engineers, and product managers in the development, qualification, documentation, and deployment of new - as well as enhancements to existing - operational models, metrics, and data driven dashboards. As such, this individual must possess the technical aptitude to pick-up new BI tools and programming languages to interface with different data access layers for metric computation, data mining, and data modeling. This role is a 6 month co-op to join AR full time (40 hours/week) from July – December 2023. The Co-op will be responsible for: Diving deep into operational data and metrics to identify and communicate trends used to drive development of new tools for supportability Translating operational metrics into functional requirements for BI-tools, models, and reporting Collaborating with cross functional teams to automate AR problem detection and diagnostics