Customer-obsessed science


Research areas
-
July 29, 2025New cost-to-serve-software metric that accounts for the full software development lifecycle helps determine which software development innovations provide quantifiable value.
Featured news
-
2025Can we efficiently choose the best Anomaly Detection (AD) algorithm for a data-stream without requiring anomaly labels? Streaming anomaly detection is hard. SOTA AD algorithms are sensitive to their hyper-parameters and no single method works well on all datasets. The best algorithm/hyper-parameter combination for a given data-stream can change over time with data drift. ‘What is an anomaly?’ is often application
-
2025In Amazon robotic warehouses, the destination-to-chute mapping problem is crucial for efficient package sorting. Often, however, this problem is complicated by uncertain and dynamic package induction rates, which can lead to increased package recirculation. To tackle this challenge, we introduce a Distributionally Robust Multi-Agent Reinforcement Learning (DRMARL) framework that learns a destination-to-chute
-
2025How to best develop foundational models for time series forecasting remains an important open question. Tokenization is a crucial consideration in this effort: what is an effective discrete vocabulary for a real-valued sequential input? To address this question, we develop WaveToken, a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time localized frequencies
-
2025Recent years have witnessed a surge in the development of protein structural tokenization methods, which chunk protein 3D structures into discrete or continuous representations. Structure tokenization enables the direct application of powerful techniques like language modeling for protein structures, and large multimodal models to integrate structures with protein sequences and functional texts. Despite
-
2025In high-stakes industrial NLP applications, balancing generation quality with speed and efficiency presents significant challenges. We address them by investigating two complementary optimization approaches: Medusa for speculative decoding and knowledge distillation (KD) for model compression. We demonstrate the practical application of these techniques in real-world travel domain tasks, including trip
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all