Parmida Beigi, an Amazon senior research scientist, is seen smiling into the camera on a sunny day, she is standing on a terrace with houses and a cityscape visible in the background
Parmida Beigi, an Amazon senior research scientist, uses social media to help others grow into machine learning career paths via her handle @bigdataqueen.

On a mission to demystify artificial intelligence

Parmida Beigi, an Amazon senior research scientist, shares a lifetime worth of experience, and uses her skills to help others grow into machine learning career paths.

Parmida Beigi’s career has touched many facets of machine learning and data science. From her PhD research in computer vision and time series forecasting, to her work in Alexa AI end-to-end systems.

Today Beigi pursues — among other things — speech recognition and natural language processing initiatives to help Amazon’s Alexa customers through her work on the local info team. Beigi has led the work of improving the relevance and ranking of entity search traffic (e.g. queries like “Where is Lions Gate Bridge?”).

As a senior ML practitioner, Beigi says she feels that it’s part of her mission to demystify her field for everyone.

The evidence of her passion for helping others is impressively public. Beigi answers questions and offers practical advice on her popular social media, such as Instagram, LinkedIn, and Twitter feeds. Using simple graphics, quick clips, and the handle @bigdataqueen, Beigi invites followers in to her daily life and expertise as a machine learning scientist at Amazon.

To date, generous knowledge-sharing has garnered her close to 100,000 followers. But her journey to ML scientist/social media maven wasn’t always an obvious one.

At first, she thought she might follow in her family’s footsteps and become a medical doctor. Today, she works on ML/AI projects related to spoken language understanding and information retrieval and ranking. So Beigi relates to people who are figuring out their professional path — not all that long ago, she was doing the same thing.

Discovering data science

In high school, Beigi first focused on science as a stepping stone for pre-med programs. But something was missing. Her natural interests gravitated more toward math and computing, and she began to move in that direction, earning a bachelor’s in electrical and computer engineering.

In a LinkedIn post from earlier this year, Beigi wrote about the excitement surrounding generative AI and the need to "demystify generative AI and move beyond the hype".

In college, Beigi took classes that piqued her interest in digital signal processing. While earning her master’s in electrical and computer engineering, she focused her research on compressive sensing, signal processing and image/video processing, which allowed her to hone her skills in a practical setting.

But Beigi hadn’t quite skipped the healthcare field after all. One of her internships involved a research collaboration between the University of British Columbia (UBC) and the BC Cancer Research Center. In that case, the signal processing involved measuring specific biomarkers in patients’ breath with chemo-resistive sensors, and then using statistical methods to seek specific links between lung cancer and smoking habits.

“Back in those days, I didn’t know I was already building foundations for my career in machine learning,” says Beigi.

“The part of signal processing that really interested me was extracting the information embedded in the signals through time-frequency and spatio-temporal representations,” she says, adding that she loved “being able to solve difficult problems and improve human lives.”

Beigi presented her research at the BCCRC Health Sciences Conference and received the best speaker award. This work also resulted in a journal paper published in IEEE Transactions on Biomedical Engineering.

Piqued by machine learning

She continued on at UBC for her PhD in electrical and computer engineering. Her first few years, she was working on computer vision and AI — and found herself increasingly drawn to machine learning.

Every time ML came up at journal paper submissions that she was reviewing, or conferences she attended such as ICASSP and CVPR, she was fascinated by its vast applications, so she started digging deeper.

“I read lots of papers, took several online courses and listened to podcasts, even though there were not many at that point — whatever tool I could find,” she says. “I set up my research environment so I could develop simple ML-based methods based on the data that I gathered for my thesis, to see how it would work compared to the conventional rule-based techniques that we were using before.”

She was hooked.

Beigi realized she could learn a lot more about practical machine learning by integrating it into her research, where it could be used to solve a real-life problem.

She started working with two hospitals in Vancouver, Canada, where she found out there was a need to create technology for image-guided procedures that would allow doctors to ensure accurate placement of epidural needles — which is notoriously tricky.

Analyzing a stream of ultrasound images taken from a patient’s back while the anesthesiologist was inserting a needle, Beigi developed a tool using image processing techniques along with time-series analytics and ML to visualize and localize that needle for the doctor.

Beigi published and presented her research at several peer-reviewed journals and conferences, including her ML-based tracking work which was published in the International Journal of Computer Assisted Radiology and Surgery. She was also the recipient of an NSERC Alexander Graham Bell scholarship, awarded to top-tier Canadian PhD scholars.

After defending her thesis, she took a job as an ML scientist at Boeing where she was leveraging her expertise with sensor processing to work on predictive and prescriptive maintenance of Boeing aircraft.

Starting out on social

That’s also when she began her social media journey.

“I started sharing my learnings as a self-taught ML scientist to give back to the community and to empower aspiring tech talents” Beigi says. “I wasn’t really taught ML at school. During my early grad studies, when I was done with my research and teaching duties, I was studying machine learning on my own.”

It’s this personal, DIY experience that makes her content so relatable.

Which university degrees are best for a career in AI or data science? Is self-supervised learning really just a fancy name for unsupervised learning? How do you get started coding machine learning in Python?

Beigi says the most common questions she answers are about how to get into data science and ML, and people asking if they can still get into the field without a PhD.

“Data science is not limited to tech, all industries have started to benefit from data science and AI solutions,” she answers. “Typically, for a DS/ML generalist, you don’t need a PhD or necessarily a degree in computer science or data science, these may only help you get shortlisted, but what matters most is whether you can get the job done.”

Career advice
Belinda Zeng, head of applied science and engineering at Amazon Search Science and AI, shares her perspective.

She also helps by providing specifics, drilling down into what skills are needed for the job, regardless of degree.

As she expanded her social presence, she also began to consider a move. She knew her next step would be into the U.S. — specifically to Silicon Valley.

She decided to “do more research, gain more targeted knowledge and hands-on practical experience through side projects, and then apply for jobs that were not necessarily closely related to my PhD work, that would challenge me on both the practical and technical side.”

That’s how she ended up at Amazon.

Working at Amazon

Beigi interviewed at a few companies during her job search, and after pondering competing offers, she decided to join Amazon in 2019. More than three years later, she hasn’t looked back.

“While I stayed with the same team for three years, I’ve had the luxury of applying data science across a variety of verticals, which is a part of my experience at Amazon that I really love,” she says. “It’s always Day 1 at Amazon, and customers are at the center of everything we do. Starting with the customers and working backwards, I get to work with end-to-end Alexa components, starting from speech recognition, to natural language understanding, all the way to the final stage where we optimize relevance to best address customers’ queries through learning to ranking techniques.”

Careers in data science
How Jared Wilber is using his skills as a storyteller and data scientist to help others learn about machine learning.

Since Beigi joined Amazon, she has been a member of Amazon mentoring program, and has been consistently working on improving the bar for scientific publications as an AMLC reviewer.

“A great data scientist is curious, they look at the science behind everything, the how and why things work, and identify patterns, correlations and causations. Similar to a data science project itself, isn’t it?” she says. “Just like science, data science is a broad term. Find the kind of data science that is right for you — you know more than you think you do.”

Related content

ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, NY, New York
Amazon Advertising exists at the intersection of marketing and e-commerce and offers advertisers a rich array of innovative advertising solutions across Amazon-owned and third party properties. We believe that advertising, when done well, can greatly enhance the value of the customer experience and generate a positive return on investment for our advertising partners. We are currently looking for a highly skilled and motivated Data Scientist to help scale our growing advertising business. The Data Scientist is a key member of the Global Marketing Insights team at Amazon Ads, working with marketing, product, retail and other Amazon business partners to analyze and improve advertisers’ performance on Amazon, in support of their marketing objectives. You will work with Amazon's unique data and translate it into high-quality and actionable insights and recommendations to improve the effectiveness of advertiser campaigns and unlock business opportunities. Day to day activities include analyzing advertiser behaviors to develop data-driven insights on what tactics and strategies lead to success. You will also build automated solutions to generate science driven insights at scale, that are distributed to our advertisers across channels. Basic qualifications - Bachelor's or Master's degree in Engineering, Statistics, Economics, or a related technical field - Proven experience in data analytics or data science roles - Proficiency with SQL and Python - Strong understanding of basic statistical techniques and methodologies such as distributions, hypothesis testing, regressions, experimentation, A/B Testing etc. - Excellent organizational, interpersonal, and communication skills (both written and verbal) - Ability to work cross-functionally and with technical and non-technical stakeholders Preferred qualifications - Understanding of advanced statistical techniques and methodologies such as causal inference, propensity score matching, machine learning etc. - Experience with developing and deploying production machine learning models, especially on cloud platforms - Experience building and managing data pipelines - Experience with digital advertising products, performance analytics , marketing and advertising campaigns - MBA, Master’s, or Doctoral degree in Economics, Engineering, Marketing, Statistics, Advertising, or related fields - Publication track record/writing experience (ex. published a paper in a technical journal or trade publication) About the team The Marketing Insights team is responsible for delivering science backed insights to millions of advertisers via our marketing messages. Our team is distributed across the globe and is building cutting edge data science to identify and communicate the impact of various advertising strategies for our products. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, CA, Santa Clara
We are looking for an Applied Scientist who is passionate about building services and tools for developers that leverage artificial intelligence and machine learning. You will be part of a team building Large Language Model (LLM)-based services with the focus on enhancing the developer experience in the Cloud. The team works in close collaboration with other AWS services such as AWS Cloud9, the AWS IDE Toolkit and AWS Bedrock. If you are excited about working in cloud computing and building new AWS services, then we'd love to talk to you. As an Applied Scientist, you are recognized for your expertise, advise team members on a range of machine learning topics, and work closely with software engineers to drive the delivery of end-to-end modeling solutions. Your work focuses on ambiguous problem areas where the business problem or opportunity may not yet be defined. The problems that you take on require scientific breakthroughs. You take a long-term view of the business objectives, product roadmaps, technologies, and how they should evolve. You drive mindful discussions with customers, engineers, and scientist peers. You bring perspective and provide context for current technology choices, and make recommendations on the right modeling and component design approach to achieve the desired customer experience and business outcome. Key job responsibilities - Understand the challenges that developers face when building software today, and develop generalizable solutions. - Collaborate with developers and pave the way towards bringing your solution into production systems. Lead cross team projects and ensure technical blockers are resolved - Communicate and document your research via publishing papers in external scientific venues. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA