Mahdieh Allahviranloo, an Amazon Visiting Academic, is seen standing in the back of an Amazon delivery vehicle. The truck is empty, it's back door is open, and Mahdieh is smiling while wearing a safety vest.
Mahdieh Allahviranloo, an Amazon Visiting Academic with the Last Mile Science team, is spending her sabbatical from the City College of New York researching ways to boost efficiency in Amazon's last-mile delivery network.

Where machine learning models meet mobility and human behavior

Mahdieh Allahviranloo is using her expertise in transportation engineering to assist last-mile delivery operations at Amazon.

On a recent ride-along with an Amazon delivery driver in New York City, Mahdieh Allahviranloo got a firsthand look at the gap between algorithm logic and city logic. The driver’s intelligence was overriding the forecasting machine’s intelligence.

Why? Because the driver knew the challenges of street parking in Brooklyn, among other nuances of city deliveries, and she was aggregating packages to deliver on foot from fewer vehicle stops.

"The driver was so fast and very skilled. She was doing a lot of smart optimization on her own," Allahviranloo recalls.

As a Visiting Academic with the Amazon Last Mile Science team, Allahviranloo explores this space between computational science and human intuition. She is spending her sabbatical from the City College of New York (CCNY-CUNY), where she is an associate professor of civil engineering, researching ways to boost efficiency in Amazon's last-mile delivery network.

Maximum utility, minimum cost

She took the observational ride in Brooklyn to contribute to the work of her colleagues in Seattle-based Amazon last mile transportation team. Most of Allahviranloo's time at Amazon, which began in September 2021, has focused on optimizing last-mile operations. This includes the operation from delivery stations, which are the last stop for packages before they’re loaded up for the trip to customers.

Operations research
How Customer Order and Network Density OptimizeR (CONDOR) has led to improved delivery routes.

In her research, Allahviranloo integrates data mining, statistical analysis, and optimization models to study how individuals move in urban areas. Among many other publications, she has published papers on the daily activity patterns of travelers, peer-to-peer crowdshipping, vehicle routing and resource allocation problems, smart cities, and self-driving vehicles.

At Amazon, she is applying her expertise to the challenges of managing shipping volume and labor across delivery stations. Though the context is a departure from her focus on urban transportation, there are many similarities, since both are heavily using concepts of network modeling and machine learning.

"They're all mathematical problems," Allahviranloo says. "We are solving network models to gain the maximum utility at the minimum cost."

In one project, she is applying a method called consensus planning to Amazon's network of delivery stations. The model attempts to create consensus among different "agents," or entities within a network, to pinpoint and prevent potential bottlenecks. In the context of delivery stations, the agents might be delivery service providers, delivery station labor planning teams, and the physical capacity of the station in terms of conveyor belts, space, and so on. Any misalignment in planning among these different operational groups would have significant impacts.

Allahviranloo's model examines how to plan for shipping volume in two hierarchies: one, by planning for labor and capacity within each delivery station, and two, by designing a communication system across hundreds of delivery stations so that stations can absorb overflow from one another when needed.

The project is an extension of similar work across fulfillment centers done by Amazon's Supply Chain Optimization Technologies team. The overarching goal for the work is to deliver packages as efficiently as possible to customers at the least cost.

Last-mile challenges
INFORMS talk explores techniques Amazon’s Supply Chain Optimization Technologies organization is testing to fulfill customer orders more efficiently.

Other projects which she is directly involved fall under the umbrella of picklist optimization modeling, aiming to incorporate an idea of package size, weight, and location to design better pick lists, which tell delivery station item staff which items need to be retrieved from racks for staging and loading.

"We are looking at how we can assign tasks optimally so that everyone finishes around the same time and there is a balanced allocation of tasks among associates," Allahviranloo says.

Having a voice and using it to support others

Allahviranloo has long been interested in the variables that go into mobility of all kinds. She became interested in the field through two undergraduate classes at Sharif University of Technology in Tehran: transportation systems and engineering economics.

Mahdieh Allahviranloo is seen outside on a boat wearing a white shirt that has sunglasses clipped to it, she is sitting and looking to her left
Mahdieh Allahviranloo says transportation fascinated her as a research topic because it combined problems of econometrics and optimization with a wild card: people.

“I realized I liked applying decision-making processes and mathematical modeling in innovative ways to solve different engineering problems,” she says.

After getting her civil engineering degree in Iran, she got her PhD in transportation engineering at the University of California, Irvine. Transportation fascinated Allahviranloo because it combined problems of econometrics and optimization with a wild card: people.

"Human behavior is totally uncertain, which makes transportation problems very complex to design and to think about," she says.

After learning about Amazon's Visiting Academic program, Allahviranloo began working with Amazon part-time last year and is now full time through August 2023.

“The Visiting Academic program is a win-win for researchers and Amazon, as it allows Amazon to tap into top scientific talent and enables those researchers to work on large and complex real-world problems,” said Julian Pachon, worldwide director of Last Mile Science and Analytics.

Allahviranloo says she enjoys working with a team where she learns from others, but people are open to new approaches.

Related content
Dartmouth College professor is focusing on broader educational efforts with customers and other stakeholders.

"New ideas are not dismissed. We talk, we negotiate, and this provides a very safe environment where ideas are exchanged, and I’m able to have my voice," she said. "I’m not scared of being challenged, but at the same time, I receive constructive critiques from my colleagues, which is amazing."

Allahviranloo also volunteers as a mentor with the CCNY Women's Robotics Club, advising students from disciplines such as mechanical engineering, electrical engineering, and computer science as they pursue robotics projects.

"The main purpose is to give young women the courage to get into programming and have hands-on experience," she says. "I believe that society is successful when everybody's on the same level. If you sit on a chair and one of the legs is short, you're going to fall down."

For aspiring engineers, Allahviranloo recommends being guided by your passion and the process rather than having a goal, since goals can change.

"The main thing is to know what drives you and what makes you happy," she says. "Once you're happy, work is not going to look like work. It's going to be a very joyful process that you have a passion for."

It's the kind of joy Allahviranloo is finding while solving problems on the streets of New York City and on the floors of Amazon’s delivery stations.

Related content

US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Some knowledge of econometrics, as well as basic familiarity with Stata or R is necessary, and experience with SQL, Hadoop, Spark and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Boston
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics, a wholly owned subsidiary of Amazon.com, empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. AR is seeking uniquely talented and motivated data scientists to join our Global Services and Support (GSS) Tools Team. GSS Tools focuses on improving the supportability of the Amazon Robotics solutions through automation, with the explicit goal of simplifying issue resolution for our global network of Fulfillment Centers. The candidate will work closely with software engineers, Fulfillment Center operation teams, system engineers, and product managers in the development, qualification, documentation, and deployment of new - as well as enhancements to existing - operational models, metrics, and data driven dashboards. As such, this individual must possess the technical aptitude to pick-up new BI tools and programming languages to interface with different data access layers for metric computation, data mining, and data modeling. This role is a 6 month co-op to join AR full time (40 hours/week) from July – December 2023. The Co-op will be responsible for: Diving deep into operational data and metrics to identify and communicate trends used to drive development of new tools for supportability Translating operational metrics into functional requirements for BI-tools, models, and reporting Collaborating with cross functional teams to automate AR problem detection and diagnostics