How three science PhDs found different career paths at Amazon

Their doctoral degrees help these product managers bridge the gap between business and science.

While most students get into science PhD programs envisioning a career in research, there are many other paths to pursue. At Amazon, employees with advanced degrees in science find roles in product and program management, and other careers that depart from the traditional academic route.

The choice is not as unusual as you might think. Almost 40% of U.S. doctoral scientists and engineers who are employed describe their primary or secondary work activity as “management, sales or administration,” according to the 2017 Survey of Doctorate Recipients conducted by the National Center for Science and Engineering Statistics.

Tingting Sha Irene Song Ahmed El Saadany Amazon Science.jpg
Left to right: Tingting Sha, senior manager; Irene Song, principal product manager; and Ahmed El Saadany, senior product manager; all three are scientists who have migrated to product management roles within Amazon's Supply Chain Optimization Technologies (SCOT) organization. Each says their science credentials help them influence the development of new products and services.

Nor does working in one of those areas mean leaving behind all the training they received while obtaining their advanced degrees.

Individuals who persevere through an arduous PhD program develop the ability to think deeply about problems and develop solutions for them, a skill that is crucial for product managers.

“The mental model and the foundational skill sets are the same,” said Tingting Sha, senior manager at Amazon Supply Chain Optimization Technologies (SCOT). “How do we look at a problem? How do we use a scientific solution to address that problem and better serve our customers? All the learnings I had with my PhD are applicable to answer those questions.”

Sha is not the only scientist turned product manager. We spoke with her, Irene Song, principal product manager, and Ahmed El Saadany, senior product manager, about their science backgrounds and what motivated them to pursue a career in industry.

Literature, finance, advertising: Irene Song’s non-traditional background

As an undergrad at Smith College, Song never contemplated working in the tech industry or even following a science-related career. She wanted to be a writer.

“My plan was to go to grad school and study literature,” she says.

When she finished her bachelor’s degree in literature and math and got a job offer from an investment bank, she decided to work for a couple of years before following her literary path. She ended up enjoying finance and decided to apply for an MS/PhD program in financial engineering at Columbia University. It was 2008, and her manager advised her that it made sense to take a break and go to grad school given the financial crisis.

I always liked observing what people are doing to make business decisions and then figuring out a way to automate that based on data.
Irene Song

When Song finished her PhD, which focused on portfolio optimization, she knew she didn’t want to remain in academia because she didn’t enjoy conducting research in isolation. But she also didn’t want to go back to finance. After attending a talk about how the advertising industry was going digital, she became interested in applying her portfolio optimization experience in advertising.

For three years she worked for an advertising agency technology team, developing a platform to help clients determine how to invest advertising funds in an optimal way. She was responsible for connecting business, science, and technology.

“What I realized through working in different industries is that I always liked observing what people are doing to make business decisions and then figuring out a way to automate that based on data and so we can make decisions more rationally in a scalable manner,” she said.

As she described her interests to a friend who had gone to work for Amazon, he told her that they aligned with the description of a product manager role. She then had a call with an Amazon manager, which turned into a successful job interview. The fact that her team makes business decisions while also owning the technology used to implement scientific solutions made the job a great fit for her, Song said. It also fulfilled her interest of automating solutions at scale.

Today she works across multiple teams to develop solutions for several types of opportunities, serving as a bridge between business, science, and engineering. Recently, for example, she and her team developed a proposal to assess inventory capacity at warehouses during holidays. Taking lessons learned during the 2020 holiday season around capacity and inventory volume, her team is working to adapt in preparation for this year’s holidays.

Ahmed El Saadany moved to industry for “real world” experiences

El Saadany was following a successful academic path in the field of supply chain management. A few of his research papers, which in general looked into how to preserve the environment while also improving the supply chain, got hundreds of citations. One of the projects he worked on during his PhD at Ryerson University in Canada focused on determining effective incentives for customers to return products that they no longer use so they can be sold again or recycled.

Even as a scientist, not just as an engineer, I realized I’d learn more by working in industry, especially when it comes to supply chain
Ahmed El Saadany

At one point in his academic trajectory, his models became very complicated. He felt he was relying on too many assumptions and that it wouldn’t be fruitful to continue producing increasingly complex models without observing how things worked in the “real world”.

“Even as a scientist, not just as an engineer, I realized I’d learn more by working in industry, especially when it comes to supply chain,” he said.

El Saadany joined Amazon in January 2016 after working in consulting for a few years. “One of the things that I found similar between academia and Amazon is that you have the chance and the time to do a really deep dive into one area — to understand all the details about it,” he said.

At Amazon, El Saadany and his team assess situations where, for example, Amazon ends up with more inventory than is needed.

“In these instances, we need to either improve the sales, offer a discount, market it in a different way, or work with the vendor to make sure that we have a very efficient and agile supply chain,” he said. “Because if we keep that product forever in our inventory, it will lose value, and it won’t help our customers. So, the question is, ‘How can we better serve our customers and maximize the value of the product?’”

El Saadany notes that the product manager role is the right fit for researchers who want to build on what they’ve learned as scientists and develop tools that help people directly.

“When you build something within Amazon, you can see the impact of your work as an Amazon delivery arrives on your doorstep,” he said.

Tinting Sha’s trajectory: From designing CPUs to leading a team of 25 people

Like El Saadany, one reason Sha decided to move into industry was that she felt the assumptions made in academia did not always correspond to reality.

“I wanted to understand what it was like to get more realistic, because research might go so off the track when you don't know the business context,” she said.

She also wanted to see her research have real-world impact.

Keep learning and being curious, there’s always going to be a learning process.
Tingting Sha

For her PhD, Sha studied computer architecture at the University of Pennsylvania. Back in college, she was fascinated by how central processing units (CPUs) processed so many different types of information. That’s why going to UPenn — where ENIAC was developed — was a straightforward decision. In her research, she focused on how to store and retrieve data more efficiently.

While her initial plan was to become an academic, her life’s journey took a new path after an internship at Intel.

“Over time, I determined that my true passion is trying to build something that's going to help my target customers,” said Sha. “And in order to do so, I needed to equip myself not only with science and engineering capabilities, but also with the business aspects.”

That's why she obtained a master’s in business administration from the Massachusetts Institute of Technology in 2015, and then joined Amazon.

Although she doesn’t design CPUs anymore, Sha said the problem-solving abilities harnessed during her PhD studies at UPenn are in constant use. Since joining Amazon, she continues to learn new skills required for her senior manager, product manager role.

Her philosophy: “Keep learning and being curious,” she says. “There’s always going to be a learning process.” Right now, as she leads a team of 25 people, she’s focused on growing her skills as a leader.

Impacting science as a product manager

For Song, El Saadany, and Sha, their science credentials help them influence the development of new products and services.

“At Amazon, you end up doing something at the forefront of science, as a lot of what we do is not actually published out there,” El Saadany said. “We're building new things because we're serving customers in ways that have never been done before.”

The reason why scientists feel comfortable writing a science proposal with me is that they know that, when I’m editing it, I understand what’s in the proposal.
Irene Song

“The reason why scientists feel comfortable writing a science proposal with me is that they know that, when I’m editing it, I understand what’s in the proposal,” said Song. “Basically, it reduces the gap of communication between people with different backgrounds.”

One bit of career advice she has for scientists aspiring to a product manager position is to focus on communication skills.

“If you want to be in the product role, more than understanding science, you must be able to communicate what the problem is — and what the solution is — to various audiences, regardless of their backgrounds.”

Sha says SCOT teams are always looking for “Amazonians currently not working at Amazon.” By that she means individuals who have a strong sense of ownership and who make good judgements in both diving deep on a topic, and thinking big.

“You need to both zoom into the details and really understand the problem, while also popping up to see the bigger picture.”

Related content

RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation