How three science PhDs found different career paths at Amazon

Their doctoral degrees help these product managers bridge the gap between business and science.

While most students get into science PhD programs envisioning a career in research, there are many other paths to pursue. At Amazon, employees with advanced degrees in science find roles in product and program management, and other careers that depart from the traditional academic route.

The choice is not as unusual as you might think. Almost 40% of U.S. doctoral scientists and engineers who are employed describe their primary or secondary work activity as “management, sales or administration,” according to the 2017 Survey of Doctorate Recipients conducted by the National Center for Science and Engineering Statistics.

Tingting Sha Irene Song Ahmed El Saadany Amazon Science.jpg
Left to right: Tingting Sha, senior manager; Irene Song, principal product manager; and Ahmed El Saadany, senior product manager; all three are scientists who have migrated to product management roles within Amazon's Supply Chain Optimization Technologies (SCOT) organization. Each says their science credentials help them influence the development of new products and services.

Nor does working in one of those areas mean leaving behind all the training they received while obtaining their advanced degrees.

Individuals who persevere through an arduous PhD program develop the ability to think deeply about problems and develop solutions for them, a skill that is crucial for product managers.

“The mental model and the foundational skill sets are the same,” said Tingting Sha, senior manager at Amazon Supply Chain Optimization Technologies (SCOT). “How do we look at a problem? How do we use a scientific solution to address that problem and better serve our customers? All the learnings I had with my PhD are applicable to answer those questions.”

Sha is not the only scientist turned product manager. We spoke with her, Irene Song, principal product manager, and Ahmed El Saadany, senior product manager, about their science backgrounds and what motivated them to pursue a career in industry.

Literature, finance, advertising: Irene Song’s non-traditional background

As an undergrad at Smith College, Song never contemplated working in the tech industry or even following a science-related career. She wanted to be a writer.

“My plan was to go to grad school and study literature,” she says.

When she finished her bachelor’s degree in literature and math and got a job offer from an investment bank, she decided to work for a couple of years before following her literary path. She ended up enjoying finance and decided to apply for an MS/PhD program in financial engineering at Columbia University. It was 2008, and her manager advised her that it made sense to take a break and go to grad school given the financial crisis.

I always liked observing what people are doing to make business decisions and then figuring out a way to automate that based on data.
Irene Song

When Song finished her PhD, which focused on portfolio optimization, she knew she didn’t want to remain in academia because she didn’t enjoy conducting research in isolation. But she also didn’t want to go back to finance. After attending a talk about how the advertising industry was going digital, she became interested in applying her portfolio optimization experience in advertising.

For three years she worked for an advertising agency technology team, developing a platform to help clients determine how to invest advertising funds in an optimal way. She was responsible for connecting business, science, and technology.

“What I realized through working in different industries is that I always liked observing what people are doing to make business decisions and then figuring out a way to automate that based on data and so we can make decisions more rationally in a scalable manner,” she said.

As she described her interests to a friend who had gone to work for Amazon, he told her that they aligned with the description of a product manager role. She then had a call with an Amazon manager, which turned into a successful job interview. The fact that her team makes business decisions while also owning the technology used to implement scientific solutions made the job a great fit for her, Song said. It also fulfilled her interest of automating solutions at scale.

Today she works across multiple teams to develop solutions for several types of opportunities, serving as a bridge between business, science, and engineering. Recently, for example, she and her team developed a proposal to assess inventory capacity at warehouses during holidays. Taking lessons learned during the 2020 holiday season around capacity and inventory volume, her team is working to adapt in preparation for this year’s holidays.

Ahmed El Saadany moved to industry for “real world” experiences

El Saadany was following a successful academic path in the field of supply chain management. A few of his research papers, which in general looked into how to preserve the environment while also improving the supply chain, got hundreds of citations. One of the projects he worked on during his PhD at Ryerson University in Canada focused on determining effective incentives for customers to return products that they no longer use so they can be sold again or recycled.

Even as a scientist, not just as an engineer, I realized I’d learn more by working in industry, especially when it comes to supply chain
Ahmed El Saadany

At one point in his academic trajectory, his models became very complicated. He felt he was relying on too many assumptions and that it wouldn’t be fruitful to continue producing increasingly complex models without observing how things worked in the “real world”.

“Even as a scientist, not just as an engineer, I realized I’d learn more by working in industry, especially when it comes to supply chain,” he said.

El Saadany joined Amazon in January 2016 after working in consulting for a few years. “One of the things that I found similar between academia and Amazon is that you have the chance and the time to do a really deep dive into one area — to understand all the details about it,” he said.

At Amazon, El Saadany and his team assess situations where, for example, Amazon ends up with more inventory than is needed.

“In these instances, we need to either improve the sales, offer a discount, market it in a different way, or work with the vendor to make sure that we have a very efficient and agile supply chain,” he said. “Because if we keep that product forever in our inventory, it will lose value, and it won’t help our customers. So, the question is, ‘How can we better serve our customers and maximize the value of the product?’”

El Saadany notes that the product manager role is the right fit for researchers who want to build on what they’ve learned as scientists and develop tools that help people directly.

“When you build something within Amazon, you can see the impact of your work as an Amazon delivery arrives on your doorstep,” he said.

Tinting Sha’s trajectory: From designing CPUs to leading a team of 25 people

Like El Saadany, one reason Sha decided to move into industry was that she felt the assumptions made in academia did not always correspond to reality.

“I wanted to understand what it was like to get more realistic, because research might go so off the track when you don't know the business context,” she said.

She also wanted to see her research have real-world impact.

Keep learning and being curious, there’s always going to be a learning process.
Tingting Sha

For her PhD, Sha studied computer architecture at the University of Pennsylvania. Back in college, she was fascinated by how central processing units (CPUs) processed so many different types of information. That’s why going to UPenn — where ENIAC was developed — was a straightforward decision. In her research, she focused on how to store and retrieve data more efficiently.

While her initial plan was to become an academic, her life’s journey took a new path after an internship at Intel.

“Over time, I determined that my true passion is trying to build something that's going to help my target customers,” said Sha. “And in order to do so, I needed to equip myself not only with science and engineering capabilities, but also with the business aspects.”

That's why she obtained a master’s in business administration from the Massachusetts Institute of Technology in 2015, and then joined Amazon.

Although she doesn’t design CPUs anymore, Sha said the problem-solving abilities harnessed during her PhD studies at UPenn are in constant use. Since joining Amazon, she continues to learn new skills required for her senior manager, product manager role.

Her philosophy: “Keep learning and being curious,” she says. “There’s always going to be a learning process.” Right now, as she leads a team of 25 people, she’s focused on growing her skills as a leader.

Impacting science as a product manager

For Song, El Saadany, and Sha, their science credentials help them influence the development of new products and services.

“At Amazon, you end up doing something at the forefront of science, as a lot of what we do is not actually published out there,” El Saadany said. “We're building new things because we're serving customers in ways that have never been done before.”

The reason why scientists feel comfortable writing a science proposal with me is that they know that, when I’m editing it, I understand what’s in the proposal.
Irene Song

“The reason why scientists feel comfortable writing a science proposal with me is that they know that, when I’m editing it, I understand what’s in the proposal,” said Song. “Basically, it reduces the gap of communication between people with different backgrounds.”

One bit of career advice she has for scientists aspiring to a product manager position is to focus on communication skills.

“If you want to be in the product role, more than understanding science, you must be able to communicate what the problem is — and what the solution is — to various audiences, regardless of their backgrounds.”

Sha says SCOT teams are always looking for “Amazonians currently not working at Amazon.” By that she means individuals who have a strong sense of ownership and who make good judgements in both diving deep on a topic, and thinking big.

“You need to both zoom into the details and really understand the problem, while also popping up to see the bigger picture.”

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, WA, Seattle
Job summaryAre you excited about joining a team of scientists building lasting solutions for Amazon customers from the ground up? Our team is using machine learning, and statistical methods to take Amazon’s unique customer obsession culture to another level by designing solutions that change customers behavior when it comes to product search, discovery, and purchase. In order to achieve this, we need scientists who will help us build advanced algorithms that deliver first-rate user experience during customers’ shopping journeys on Amazon, and subsequently make Amazon their default starting point for future shopping journeys. These algorithms will utilize advances in Natural Language Understanding, and Computer Vision to source and understand contents that customers trust, and furnish customers with these contents in a way that is precisely tailored to their individual needs at any stage of their shopping journey. Key job responsibilitiesWe are looking for an Applied Scientist to join our rapidly growing Seattle team. As an Applied Scientist, you are able to use a range of science methodologies in NLP/CV to solve challenging business problems when the solution is unclear. For example, you may lead the development of reinforcement learning models such as MAB to rank content to be shown to customers based on their queries. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as SageMaker, S3, and EC2 with a variety of skillsets in shallow and deep learning ML models, particularly in NLP and CV. You will bring knowledge in many of these domains along with your own specialties and skilset.Major responsibilities:Use statistical and machine learning techniques to create scalable and lasting systems.Analyze and understand large amounts of Amazon’s historical business data for Recommender/Matching algorithmsDesign, develop and evaluate highly innovative models for NLP.Work closely with teams of scientists and software engineers to drive real-time model implementations and new feature creations.Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and implementation.Research and implement novel machine learning and statistical approaches, including NLP and Computer VisionA day in the lifeIn this role, you’ll be utilizing your NLP or CV skills, and creative and critical problem-solving skills to drive new projects from ideation to implementation. Your science expertise will be leveraged to research and deliver often novel solutions to existing problems, explore emerging problems spaces, and create or organize knowledge around them. About the teamOur team puts a high value on your work and personal life happiness. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of you. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to establish your own harmony between your work and personal life.
US, WA, Seattle
Job summaryAre you excited about joining a team of scientists building lasting solutions for Amazon customers from the ground up? Our team is using machine learning, and statistical methods to take Amazon’s unique customer obsession culture to another level by designing solutions that change customers behavior when it comes to product search, discovery, and purchase. In order to achieve this, we need scientists who will help us build advanced algorithms that deliver first-rate user experience during customers’ shopping journeys on Amazon. These algorithms will utilize advances in Natural Language Understanding, and Computer Vision to source and understand content that customers trust, and furnish customers with the content in a way that meets their needs at any stage of their shopping journey. Key job responsibilitiesUse statistical and machine learning techniques to create scalable and lasting systems.Analyze and understand large amounts of Amazon’s historical business data for Recommender/Matching algorithmsDesign, develop and evaluate highly innovative - Work closely with teams of scientists and software engineers to drive real-time model implementationsEstablish scalable, efficient, automated processes for large scale data analyses, model development, model validation and implementation.Research and implement novel machine learning and statistical approaches, including NLP and Computer VisionA day in the lifeIn this role, you’ll be utilizing your NLP or CV skills, and creative and critical problem-solving skills to drive new projects from ideation to implementation. Your science expertise will be leveraged to research and deliver often novel solutions to existing problems, explore emerging problems spaces, and create or organize knowledge around them. About the teamOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future.We put a high value on your work and personal life happiness. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of you. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to establish your own harmony between your work and personal life.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 6-month Co-Op to join AR full-time (40 hours/week) from January 2023 to June 2023. Amazon Robotics co-op opportunities will be based out of the Greater Boston Area in our two state-of-the-art facilities in Westborough, MA and North Reading, MA. Both campuses provide a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.Key job responsibilitiesWe are seeking data scientist co-ops to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
GB, London
Job summaryAmazon's F3 (Fresh, Food Fast) team in Europe is seeking a truly innovative and technically strong data scientist with a background in machine learning, and statistical modeling/analysis, as well as time-series forecasting. We are looking for a highly motivated, analytical and detail-oriented candidate to help build scalable prescriptive & predictive business analytics solutions that supports various aspects of Amazon Grocery business. You are a pragmatic generalist. You can equally contribute to each layers of a data solution – you work closely with product managers and stakeholders to define the inputs and the outputs; liaise with with business intelligence engineers to obtain relevant datasets and prototype predictive analytic models and implement data pipeline to productionize your models, and review key results with business leaders and stakeholders. Your work exhibits a balance between scientific validity and business practicality.Key job responsibilitiesTo be successful in this role, you must be able to turn ambiguous business questions into clearly defined problems, develop quantifiable metrics and robust machine learning models from imperfect data sources, and deliver results that meet high standards of data quality, security, and privacy.Interview stakeholders to gather business requirements and translate them into concrete requirement for data science projectsBuild models that predict changes / prescribe solutions and incorporate inputs from product, engineering, finance and marketing partnersApply data science techniques to automatically identify trends, patterns, and frictions related to a wide variety of operational topicsWork with BIEs and WW Data Engineering team to deploy models and experiments to productionIdentify and recommend opportunities to automate systems, tools, and processes.A day in the lifeIn a week, you will spend 20% of your available time working with the stakeholders on scoping or demo-ing a new feature for an existing solution or a completely new solution.As a Data Scientist, this time will be also spent advising on advanced experiment design & analysis to the business.20% will be spent on operational excellence tasks, that are planned in advance.50% of your time will be about building the solutions.10% is allocated for urgent non-planned work.Of course, the time for you to learn a new technology, attend or present at an internal analytics conference is baked into workload planning.About the teamThe team has both Data Science and Business Intelligence skillset, which allows to create solutions at the intersection of two disciplines and learn from each other.We interact with multiple stakeholder groups, including Vendor Managers, Amazon Vendor Services, Category Leaders, PMs, Operations - creating solutions that bring several groups of stakeholders together.