Rajeev Rastogi headshot with map of India
Rajeev Rastogi, vice president of machine learning for Amazon India, and his team work to address the needs of more than 600 million people who are online, who together speak more than 22 languages and 19,500 dialects.
Credit: Glynis Condon

How Rajeev Rastogi’s machine learning team in India develops innovations for customers worldwide

Team works to address the needs of 600 million people online who together speak more than 22 Indian languages with over 19,500 dialects.

As vice president of machine learning at Amazon India, Rajeev Rastogi is helping his team drive innovations that have a profound impact not only on shoppers in India, but also on the company’s customers around the world. For example, models developed by Amazon’s scientists in India have been used globally to improve the quality of Amazon’s catalog by ensuring that for all products, images match with the title. In addition, including delivery speed as a feature in search ranking — a key factor that helps surface ‘faster’ offers to customers in search results — was first launched in Amazon India.

Rastogi began his career at Bell Labs. His early work involved developing clustering algorithms that could scale — a significant innovation in a field that was then dominated by statisticians working on relatively smaller data sets. Rastogi also served as the vice president of Yahoo Labs, where his team developed data-extraction algorithms to pull structured information from billions of webpages, and then present them to users in easily digestible ways.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Rastogi joined Amazon in 2012. His first Amazon project involved the development of algorithms to classify products into Amazon’s large and complex taxonomical structure — for example, to classify a Samsonite luggage set in ‘Carry-On Luggage,’ ‘Suitcases’ and ‘Luggage Sets.’ Since then, Rastogi has been involved in utilizing science to make an impact in a number of areas that have resulted in faster, more seamless and sustainable, shopping experiences.

In this interview, Rastogi spoke about the projects his teams have worked on to improve the shopping experience for Amazon’s customers, a recently developed statistical model that has helped Amazon reduce product-shipment damage in India, and innovations developed to help customers get what they need safely after the outbreak of the COVID-19 pandemic.

Q. What are some of the ways that science has helped improve the shopping experience for Amazon’s customers in India?

India is a unique market in several important ways. There are more than 600 million people online in the country. Many of them are relatively new to digital shopping. Over 85% of our traffic comes from a diverse range of mobile devices.  To complicate matters, mobile customers in India can experience fluctuating speeds due to congested towers and tower switching.

We’ve developed models to predict customers who are on a slow or spotty network based on criteria like device characteristics, cell tower information, and the latency of the last request. For such customers, we provide an adaptive experience and serve streamlined pages with a lower number of widgets that are easier to navigate.

With more than 22 languages and 19,500 dialects, India is also an incredibly diverse country with strong regional preferences. A customer searching for a sari in Gujarat may be interested in a “Bandhani,” which is popular in that state, while a customer in Karnataka searching for a sari may be looking for “Mysore Silk,” a popular variety in that region. To surface regionally popular and relevant products in search results, we have added regional sales for products as a feature in search.

A key problem in India and other emerging countries is that addresses are highly unstructured; they are also incomplete, with critical address fields such as street name missing from the address. For example, we have seen addresses on Amazon.in such as “Near Orion Mall, Malleswaram, Bangalore”, or “Near Bus Stand, Sambhaji Chowk, Nasik”. Our team has developed a machine-learning-based “Address Deliverability Score” to identify poor quality and incomplete addresses that are difficult to locate and deliver to, and intercept them at address creation time to improve address quality.  

You can also have issues related to catalog quality. For example, important attribute values such as the color of a product may be missing for a product. This means that a shoe might be red, and yet might not show up in the list of results for a customer searching for ‘red shoe.’

We use a variety of deep learning models to improve catalog quality by extracting attributes such as color from product titles and images, and backfilling missing product information. To give just one example, we use attention mechanisms to focus the attention of convolutional neural networks on parts of the image from where we want to extract the color of a product. 

We also utilize semi-supervised learning techniques to train neural networks extensively, which greatly reduces the need for large amounts of labeled data. What I love about this approach is that unlabeled data can be a treasure trove of information, particularly for understanding higher-level representations. For example, an algorithm can analyze text patterns around words to understand that ‘car’ and ‘automobile’ are similar without having to explicitly specify that they are synonyms.

India is a market unlike any other in the world, and I’m proud of how we are using science to solve some really difficult problems for our customers.

Q. How are you using science to make Amazon more sustainable?

Amazon has committed to reach net zero carbon by 2040, one decade ahead of the Paris Agreement. Science will play an extremely important role in enabling innovations that will make this happen.

Let me give you just one example. At this year’s European Conference on Machine Learning, members of my team presented a new model for determining the best way to package a given product. We’ve all seen customers not happy about damaged products and excessive product packaging. Incorrect packaging is not only wasteful and bad for the environment, but it also increases our packaging and concessions costs.

India is a market unlike any other in the world, and I’m proud of how we are using science to solve some really difficult problems for our customers.
Rajeev Rastogi

Determining the optimal way to ship a product is complicated. Because one product is rarely shipped across all different package types, you run into situations where there’s a lack of ground truth data. In addition, we have the problem of enforcing ordinality into the process. We have to predict higher probabilities of damage for less expensive (less robust) packaging options, and lower probabilities of damage for more expensive (more robust) options. Enforcing ordinality is not something that standard machine learning techniques do naturally.

The solution developed by my team is as elegant as it is simple. Our scientists developed a linear model, with carefully designed constraints on the model parameters to impose ordinality. To further enforce ordinality, we used data augmentation. This means that for a product-package pair that resulted in product damage, we added examples of that product coupled with less robust packages, also labeled as resulting in damage. 

We’ve applied the model to hundreds of thousands of Amazon packages, reducing shipment damage very significantly while actually saving on shipping costs. This innovation is a testament to the incredible scientific talent at Amazon India. It also speaks volumes of our desire and our ability to take on the really big problems — those that have a significant impact on the lives of our customers and the world at large.

Q. What are some scientific innovations from your team to help customers get what they need safely during COVID-19?

As soon as the pandemic struck, I became interested in what we could do as scientists to keep people safe, and help them get what they need during these trying times. Could we use technology to generate an infection risk score for each individual? These scores could be leveraged by governments and organizations to prioritize testing and identify individuals to quarantine.

We all know that COVID-19 spreads through contacts. Many governments have developed contact tracing apps that use Bluetooth signals on mobile phones to track social contacts among individuals. However, it is challenging to use this fine-grained contact data of individuals to estimate an infection risk score for each individual. This is because the probability of infection transmission through a contact depends on the duration, distance, and location (indoors, outdoors) of the contact. Furthermore, individuals may have indirectly come in contact with a person who has tested positive for COVID-19. Or they may have come in contact with an infected person, but during the period when he or she was not contagious.

I worked with fellow scientists to develop a probabilistic graphical model called CRISP for COVID-19 infection spread through contacts between individuals. The model builds off the SEIR (Susceptible-Exposed-Infectious-Removed) approach that is commonly used to track the different epidemiological status of individuals. Our model captures the transitions between these different states, while also accounting for test outcomes. We developed a block-Gibbs sampling algorithm to draw samples of the latent infection status of each individual, given data about contacts and test results. These infection status samples are then used to compute infection risk scores for each individual. We also developed a Monte Carlo Expectation Maximization (EM) algorithm to infer the infection transmission probability for each contact taking into account factors such as contact duration, distance, and location.  

Also during the pandemic, our operations team built virtual pickup points to deliver packages to customers who live in quarantined apartment buildings. The problem: identifying customers who live in these buildings and educating them about the virtual pickup points. We used address segmentation machine learning models to extract apartment building names from delivery addresses input by customers. We then sent emails to these customers notifying them about the new features. Customers were really excited about this new feature — the email open rates announcing virtual pickup points were higher than 50%.

I’ve been at Amazon for eight years now. I joined Amazon because I was excited at the prospect of conducting scientific work that had the potential to have a real-world impact. And what was true back then remains true today — I come to work every day invigorated at the potential of making a difference in the lives of millions of people around the world.

Research areas

Related content

US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Supply team (within Sponsored Products) is looking for an Applied Scientist to join a fast-growing team with the mandate of creating new ad experiences that elevate the shopping experience for hundreds of millions customers worldwide. The Applied Scientist will take end-to-end ownership of driving new product/feature innovation by applying advanced statistical and machine learning models. The role will handle petabytes of unstructured data (images, text, videos) to extract insights into what metadata can be useful for us to highlight to simplify purchase decisions, and propose new experiences that increase shopper engagement. Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Key job responsibilities As an Applied Scientist on this team you will: Build machine learning models and perform data analysis to deliver scalable solutions to business problems. Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. Research new predictive learning approaches for the sponsored products business. Write production code to bring models into production. A day in the life You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We are seeking a Principal Scientist with deep expertise in Search. Your responsibility will be to advance the state-of-the-art for search science that leads to world-class products that impact Amazon's customers. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team This is a position on Core Ranking and Experimentation team in Palo Alto, CA. The team works on a variety of topics in search ranking and relevance, such as multi-objective optimization, personalization, and fast online experimentation. We work closely with teams in various parts of the stack to ensure that our science is translated to customer facing products.
US, WA, Bellevue
Amazon is looking for a passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Automatic Speech Recognition (ASR), Machine Translation (MT), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use of speech and language technology. You will gain hands on experience with Amazon’s heterogeneous speech, text, and structured data sources, and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in all areas of human language technology: ASR, MT, NLU, text-to-speech (TTS), and Dialog Management, in addition to Computer Vision.
IN, KA, Bangalore
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. The ATT team, based in Bangalore, is responsible for ensuring that ads are compliant to world-wide advertising policies and are of high quality, leading to higher conversion for the advertisers and providing a great experience for the shoppers. Machine learning, particularly multi-modal data understanding, is fundamental to the way we drive our business, meet our goals and satisfy our customers. ATT team invests in researching and developing state of art models that analyze various type of ad assets – text, audio, images and videos - to ensure compliance to advertising policies. We also help advertisers create more successful ads by creating ML models to assist ad generation as well as to provide data-driven interpretable insights. Key job responsibilities Major responsibilities · Deliver key goals to enhance advertiser experience and protect shopper trust by innovative use of computer vision, NLP and statistical techniques · Drive core business analytics and data science explorations to inform key business decisions and algorithm roadmap · Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation · Hire and develop top talent in machine learning and data science and accelerate the pace of innovation in the group · Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production
US, WA, Seattle
We are seeking a talented applied researcher to join the Search team responsible for developing reinforcement learning systems for Amazon's shopping experience and delivering it to millions of customers. We believe that shopping on Amazon should be simple, delightful, and full of "wow" moments for everyone.
US, NY, New York
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team Amazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. Lead marketplace design and development based on economic theory and data analysis. Provide technical and scientific guidance to team members. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. Collaborate with business and software teams across Amazon Ads. Stay up to date with recent scientific publications relevant to the team. Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. Amazon’s large scale brings with it unique problems to solve in designing, testing, and deploying relevance models. We are seeking a strong applied Scientist to join the Experimentation Infrastructure and Methods team. This team’s charter is to innovate and evaluate ranking at Amazon Search. In practice, we aim to create infrastructure and metrics, enable new experimental methods, and do proof-of-concept experiments, that enable Search Relevance teams to introduce new features faster, reduce the cost of experimentation, and deliver faster against Search goals. Key job responsibilities You will build search ranking systems and evaluation framework that extend to Amazon scale -- thousands of product types, billions of queries, and hundreds of millions of customers spread around the world. As a Senior Applied Scientist you will find the next set of big improvements to ranking evaluation, get your hands dirty by building models to help understand complexities of customer behavior, and mentor junior engineers and scientists. In addition to typical topics in ranking, we are particularly interested in evaluation, feature selection, explainability. A day in the life Our primary focus is improving search ranking systems. On a day-to-day this means building ML models, analyzing data from your recent A/B tests, and guiding teams on best practices. You will also find yourself in meetings with business and tech leaders at Amazon communicating your next big initiative. About the team We are a team consisting of software engineers and applied scientists. Our interests and activities span machine learning for better ranking, experimentation, statistics for better decision making, and infrastructure to make it all happen efficiently at scale.