Rajeev Rastogi headshot with map of India
Rajeev Rastogi, vice president of machine learning for Amazon India, and his team work to address the needs of more than 600 million people who are online, who together speak more than 22 languages and 19,500 dialects.
Credit: Glynis Condon

How Rajeev Rastogi’s machine learning team in India develops innovations for customers worldwide

Team works to address the needs of 600 million people online who together speak more than 22 Indian languages with over 19,500 dialects.

As vice president of machine learning at Amazon India, Rajeev Rastogi is helping his team drive innovations that have a profound impact not only on shoppers in India, but also on the company’s customers around the world. For example, models developed by Amazon’s scientists in India have been used globally to improve the quality of Amazon’s catalog by ensuring that for all products, images match with the title. In addition, including delivery speed as a feature in search ranking — a key factor that helps surface ‘faster’ offers to customers in search results — was first launched in Amazon India.

Rastogi began his career at Bell Labs. His early work involved developing clustering algorithms that could scale — a significant innovation in a field that was then dominated by statisticians working on relatively smaller data sets. Rastogi also served as the vice president of Yahoo Labs, where his team developed data-extraction algorithms to pull structured information from billions of webpages, and then present them to users in easily digestible ways.

Rastogi joined Amazon in 2012. His first Amazon project involved the development of algorithms to classify products into Amazon’s large and complex taxonomical structure — for example, to classify a Samsonite luggage set in ‘Carry-On Luggage,’ ‘Suitcases’ and ‘Luggage Sets.’ Since then, Rastogi has been involved in utilizing science to make an impact in a number of areas that have resulted in faster, more seamless and sustainable, shopping experiences.

In this interview, Rastogi spoke about the projects his teams have worked on to improve the shopping experience for Amazon’s customers, a recently developed statistical model that has helped Amazon reduce product-shipment damage in India, and innovations developed to help customers get what they need safely after the outbreak of the COVID-19 pandemic.

Q. What are some of the ways that science has helped improve the shopping experience for Amazon’s customers in India?

India is a unique market in several important ways. There are more than 600 million people online in the country. Many of them are relatively new to digital shopping. Over 85% of our traffic comes from a diverse range of mobile devices.  To complicate matters, mobile customers in India can experience fluctuating speeds due to congested towers and tower switching.

We’ve developed models to predict customers who are on a slow or spotty network based on criteria like device characteristics, cell tower information, and the latency of the last request. For such customers, we provide an adaptive experience and serve streamlined pages with a lower number of widgets that are easier to navigate.

With more than 22 languages and 19,500 dialects, India is also an incredibly diverse country with strong regional preferences. A customer searching for a sari in Gujarat may be interested in a “Bandhani,” which is popular in that state, while a customer in Karnataka searching for a sari may be looking for “Mysore Silk,” a popular variety in that region. To surface regionally popular and relevant products in search results, we have added regional sales for products as a feature in search.

A key problem in India and other emerging countries is that addresses are highly unstructured; they are also incomplete, with critical address fields such as street name missing from the address. For example, we have seen addresses on Amazon.in such as “Near Orion Mall, Malleswaram, Bangalore”, or “Near Bus Stand, Sambhaji Chowk, Nasik”. Our team has developed a machine-learning-based “Address Deliverability Score” to identify poor quality and incomplete addresses that are difficult to locate and deliver to, and intercept them at address creation time to improve address quality.  

You can also have issues related to catalog quality. For example, important attribute values such as the color of a product may be missing for a product. This means that a shoe might be red, and yet might not show up in the list of results for a customer searching for ‘red shoe.’

We use a variety of deep learning models to improve catalog quality by extracting attributes such as color from product titles and images, and backfilling missing product information. To give just one example, we use attention mechanisms to focus the attention of convolutional neural networks on parts of the image from where we want to extract the color of a product. 

We also utilize semi-supervised learning techniques to train neural networks extensively, which greatly reduces the need for large amounts of labeled data. What I love about this approach is that unlabeled data can be a treasure trove of information, particularly for understanding higher-level representations. For example, an algorithm can analyze text patterns around words to understand that ‘car’ and ‘automobile’ are similar without having to explicitly specify that they are synonyms.

India is a market unlike any other in the world, and I’m proud of how we are using science to solve some really difficult problems for our customers.

Q. How are you using science to make Amazon more sustainable?

Amazon has committed to reach net zero carbon by 2040, one decade ahead of the Paris Agreement. Science will play an extremely important role in enabling innovations that will make this happen.

Let me give you just one example. At this year’s European Conference on Machine Learning, members of my team presented a new model for determining the best way to package a given product. We’ve all seen customers not happy about damaged products and excessive product packaging. Incorrect packaging is not only wasteful and bad for the environment, but it also increases our packaging and concessions costs.

India is a market unlike any other in the world, and I’m proud of how we are using science to solve some really difficult problems for our customers.
Rajeev Rastogi

Determining the optimal way to ship a product is complicated. Because one product is rarely shipped across all different package types, you run into situations where there’s a lack of ground truth data. In addition, we have the problem of enforcing ordinality into the process. We have to predict higher probabilities of damage for less expensive (less robust) packaging options, and lower probabilities of damage for more expensive (more robust) options. Enforcing ordinality is not something that standard machine learning techniques do naturally.

The solution developed by my team is as elegant as it is simple. Our scientists developed a linear model, with carefully designed constraints on the model parameters to impose ordinality. To further enforce ordinality, we used data augmentation. This means that for a product-package pair that resulted in product damage, we added examples of that product coupled with less robust packages, also labeled as resulting in damage. 

We’ve applied the model to hundreds of thousands of Amazon packages, reducing shipment damage very significantly while actually saving on shipping costs. This innovation is a testament to the incredible scientific talent at Amazon India. It also speaks volumes of our desire and our ability to take on the really big problems — those that have a significant impact on the lives of our customers and the world at large.

Q. What are some scientific innovations from your team to help customers get what they need safely during COVID-19?

As soon as the pandemic struck, I became interested in what we could do as scientists to keep people safe, and help them get what they need during these trying times. Could we use technology to generate an infection risk score for each individual? These scores could be leveraged by governments and organizations to prioritize testing and identify individuals to quarantine.

We all know that COVID-19 spreads through contacts. Many governments have developed contact tracing apps that use Bluetooth signals on mobile phones to track social contacts among individuals. However, it is challenging to use this fine-grained contact data of individuals to estimate an infection risk score for each individual. This is because the probability of infection transmission through a contact depends on the duration, distance, and location (indoors, outdoors) of the contact. Furthermore, individuals may have indirectly come in contact with a person who has tested positive for COVID-19. Or they may have come in contact with an infected person, but during the period when he or she was not contagious.

I worked with fellow scientists to develop a probabilistic graphical model called CRISP for COVID-19 infection spread through contacts between individuals. The model builds off the SEIR (Susceptible-Exposed-Infectious-Removed) approach that is commonly used to track the different epidemiological status of individuals. Our model captures the transitions between these different states, while also accounting for test outcomes. We developed a block-Gibbs sampling algorithm to draw samples of the latent infection status of each individual, given data about contacts and test results. These infection status samples are then used to compute infection risk scores for each individual. We also developed a Monte Carlo Expectation Maximization (EM) algorithm to infer the infection transmission probability for each contact taking into account factors such as contact duration, distance, and location.  

Also during the pandemic, our operations team built virtual pickup points to deliver packages to customers who live in quarantined apartment buildings. The problem: identifying customers who live in these buildings and educating them about the virtual pickup points. We used address segmentation machine learning models to extract apartment building names from delivery addresses input by customers. We then sent emails to these customers notifying them about the new features. Customers were really excited about this new feature — the email open rates announcing virtual pickup points were higher than 50%.

I’ve been at Amazon for eight years now. I joined Amazon because I was excited at the prospect of conducting scientific work that had the potential to have a real-world impact. And what was true back then remains true today — I come to work every day invigorated at the potential of making a difference in the lives of millions of people around the world.

Research areas

Related content

US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation