Alexander Long is seen wearing a suit, speaking at podium, the banner behind him and to the right says data to decisions CRC
Alexander Long, an applied scientist in Australia, said he initially was set to follow his father's career path in the oil and gas industry — until he discovered reinforcement learning.

How a passion for reinforcement learning guided Alexander Long’s trajectory

The field motivated him to pursue a PhD, which eventually led him to Amazon.

Alexander Long had his mind set on working in the oil and gas industry, following in his father’s footsteps. The sector is a big employer of electrical engineers in his home country of Australia, so it was a natural path after getting his bachelor’s degree at The University of Queensland (UQ).

In 2013, as Long was preparing to graduate, he became the first student selected for a collaboration between UQ and the Technical University of Munich (TUM). He spent two years in Germany, completing simultaneous master’s degrees in electrical engineering — both at UQ and at TUM. That’s when he heard about reinforcement learning (RL) for the first time — and he quickly realized he wanted to go deeper.

“Reinforcement learning is one way to frame the problem of making optimal actions,” Long explained. “Chess is a good example of a situation where you have an objective — winning the game — and you have to take a bunch of sequential steps to meet that objective. But you don’t get any concrete feedback until after you’ve made 20 or 30 moves.” The same framework can be used to solve a multitude of problems, from winning a game to optimizing a refinery or controlling a nuclear fusion reactor.

The widespread applications for reinforcement learning fascinated Long. But, he notes, the method has some significant drawbacks. “One of those is you need huge amounts of interactions with an environment before you can learn how to act well,” he explained.

Learning faster

See Amazon's Australia research locations

After completing his master’s program, Long pursued a PhD in computer science at the University of New South Wales (UNSW). He wanted to explore the challenge of how to help RL models become more data efficient by learning from fewer interactions.

The outcome was “Fast and Data Efficient Reinforcement Learning from Pixels via Non-Parametric Value Approximation”, a paper that was presented as part of an AAAI 2022 poster session.

It was very surprising; the algorithm was on par with all the best methods in terms of data efficiency, but it was about 100 times faster in terms of computation time.
Alexander Long

The paper notes that previous advances in RL algorithm efficiency “have been achieved at the cost of increased sample, and computational complexity.” That added complexity “presents a major roadblock” for online, real-world settings. In their paper, the researchers presented “Nonparametric Approximation of Inter-Trace returns (NAIT), an algorithm that is both computation and sample efficient.”

“I was poking around that area, doing baseline work, and I found there was a very basic method that could be modernized by adding a couple of innovations, but nothing crazy, and that it worked extremely well,” he says. “It was very surprising; the algorithm was on par with all the best methods in terms of data efficiency, but it was about 100 times faster in terms of computation time.”

Related content
The scientist's work is driving practical outcomes within an exploding machine learning research field.

His drive to find solutions wasn’t limited to reinforcement learning either. Long also had an entrepreneurial experience during his PhD, when he co-founded a start-up called Sigeion. He used a term of leave to participate in an accelerator program by venture capital firm Antler.

“Their approach is to take individuals, merge them together, and hope that companies come out of it,” he says. “Their logic is, if we get 80 good people, maybe we get three good companies that we can invest in. So, they make it this little hunger-games, eight-week competition. It was quite intense and very high-pressure but pretty fun.”

Long and his cofounder worked on applying reinforcement learning to supply chain challenges. “One application of reinforcement learning is optimizing inventory levels and orders,” he said. “Currently this is solved in a very rudimentary fashion in many industries.” In the end, Long and his cofounder were among eight companies to receive funding, but he decided to continue pursuing his PhD.

Joining Amazon

When Long saw that Amazon was opening an office in Australia in 2021, he focused his energies on getting a job there. He did that by contacting his future boss, Anton van den Hengel, director of applied science at Amazon.

“I emailed him three times, pestering him for a job,” he recalled. Eventually he gained an interview for an internship. His first interview didn’t lead to a role, but his second did.

Related content
Amazon’s director of applied science in Adelaide, Australia, believes the economic value of computer vision has “gone through the roof".

As an intern, Long worked on two different projects related to product listings in the Amazon Store. The first involved the fact that while customers can see characteristics of products from relevant images, the actual data related to those attributes — such as size, color or style — is sometimes missing or incomplete. Filling in this data after the fact had proven to be challenging due to, among other things, the scale to which such a system must be applied.

In previous machine learning systems, images had to be labeled, or have some categorical value associated with them.

“Recent work shows you can actually use freeform text, as long as it's natural language, pass it through a text encoder, train it with some joint objective and you have a measure of similarity between that text and whatever is in the image,” Long said. “We showed that you can use this to go back and fill in these attributes with just one single model. That’s significant because, previously, people were making models for each attribute.”

Related content
Oritseweyinmi Henry Ajagbawa utilized causal inference to help examine the interaction between changes in marketing content and Amazon customer behavior.

That led to a second project: attempting to combine the best properties of the existing single-attribute models and the broad, pretrained approach of his previous project in order to address the problem of long-tailed classification. In this scenario, some data is labeled, but most categories contain only a few examples.

So Long and his fellow researchers proposed a new method, one that was presented in the paper, “Retrieval augmented classification for long-tail visual recognition,” which was accepted by the Conference on Computer Vision and Pattern Recognition (CVPR).

The paper introduces Retrieval Augmented Classification (RAC) which, applied to the problem of long-tail classification, shows “a significant improvement over previous state-of-the-art … despite using only the training datasets themselves as the external information source.”

“When you don’t have much training data for a class, doing retrieval is better. But when you do have a lot of training data, classical supervised learning is better. One way to think about RAC is that it’s just a way to use both, although it unlocks a few other capabilities as well,” Long said.

Start-up mindset

At the end of his internship, Long went through a set of interviews and presented the work he had done over that period to help secure a full-time position as an applied scientist. Van den Hengel said the decision to hire Long was easy. “He has great skills, and a strong publication record. More than that though, he demonstrated the ability to apply and extend the state of the art in ML research. That’s what we’re seeking.”

I was told to set my own direction, work at my own pace, and let’s see what you do at the end of six months. The other exceptional thing about the internship was hanging out with some of the smartest people.
Alexander Long

Looking back on his internship, Long said his startup experience led him to assume a big company like Amazon meant he wouldn’t have as much freedom and would be told exactly what to do.

“It was not like that at all,” he noted. “I was told to set my own direction, work at my own pace, and let’s see what you do at the end of six months.”

“The other exceptional thing about the internship was hanging out with some of the smartest people,” Long said. In his first weeks as an intern, he was in the process of getting his PhD paper published and shared a draft with one of his colleagues, who quickly suggested invaluable changes. “He knew all these little things that no one at my university knew. And you have interactions like that all the time.”

Long compares his experience at Amazon with that of his father’s in oil and gas, where small improvements in efficiency could have tens or hundreds of millions of dollars of business impact. “It’s awesome that one person or a group of people can sit down, think hard, and have a disproportionate effect on both customers and the business. There are very few places where that can occur.”

Amazon has openings for data scientists, applied scientists, machine learning scientists, and more at Amazon's offices in Australia.

Related content

US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, WA, Seattle
As a Data Scientist you will be working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Work hands-on with complex, noisy datasets to derive actionable insights and explain/debug black-box models using interpretability and data-attribution methods. - Design and analyze experiments and observational studies with rigorous statistical inference, including confidence intervals, power/sample-size estimation, variance reduction, and appropriate hypothesis testing. - Benchmark models and datasets using classical and modern techniques; select ML methods based on data and operational constraints, and evaluate using robust metrics and diagnostic analyses. - Apply production-grade measurement and MLOps practices, including data quality monitoring, drift/shift detection, and A/B test design and readouts with disciplined diagnosis of metric movement. - Deliver end-to-end analyses that improve team execution and decision-making—define goal-driving metrics with stakeholders, build clear reporting (tables, dashboards, and visualizations), and communicate results that translate into concrete actions. - Investigate anomalies and data integrity issues across diverse data sources using structured root-cause analysis, correlation diagnostics, significance testing, and simulation across high- and low-fidelity datasets. - Partner closely with cross-functional domain experts to design experiments and interpret results, applying modern statistical methods to evaluate predictive and generative models as well as operational and process performance. - Develop production-quality analytics and modeling code—write well-tested, maintainable SQL/Python scripts and analysis workflows that can be promoted into production pipelines, and continuously adopt new statistical methods and best practices as the field evolves. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team We are on a mission to make Amazon the best in class destination for shoppers to discover, engage, and purchase relevant products, from brands that are relevant to them. In this role, you will design and implement Gen AI solutions that help millions of advertisers create more effective ad campaigns with intelligent recommendations, while improving the overall experience at Amazon's global scale. Our team invents, defines, and delivers advertising products that drive brand discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon Store businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, fast-paced, and collaborative team with an entrepreneurial spirit.