Anton van den Hengel is seen smiling into the camera, with some office buildings in the background
Anton van den Hengel

Anton van den Hengel’s journey from intellectual property law to computer vision pioneer

Amazon’s director of applied science in Adelaide, Australia, believes the economic value of computer vision has “gone through the roof".

Anton van den Hengel, an international pioneer in computer vision and its many applications, departed the University of Adelaide in South Australia to join Amazon as director of applied science in April 2020. He is creating a new, world-class machine-learning hub in Adelaide and supporting Amazon’s business through the development and application of state-of-the-art computer vision and scalable machine learning.

Related content
Senior principal scientist Aleix M. Martinez on why computer vision research has only begun to scratch the surface.

In 2018, van den Hengel was the founding director of the Australian Institute for Machine Learning (AIML), Australia’s first institute dedicated to machine learning research. When he left to join Amazon, AIML was 140 people strong and near the top of the institutional world rankings in terms of computer vision research. He remains the part-time director of AIML’s new Centre for Augmented Reasoning, whose mission is to build core Artificial Intelligence (AI) capability in Australia.

Van den Hengel has authored more than 300 research papers, commercialized eight patents, and been chief investigator on research projects funded by many Fortune 500 companies.

But it could all have been so different. The young van den Hengel first got into computer science simply to support his efforts to become an intellectual property lawyer. In fact, he completed his law degree.

Amazon in Australia
Research teams in Adelaide are developing state-of-the-art, large-scale machine learning methods and applications involving terabytes of data. They work on applying ML, and particularly computer vision, to a wide spectrum of areas.

“I’d bought the suit, tie, and bright white shirt and was all ready to start my first day as an entry level lawyer,” he recalls. “Then, instead, I turned around and went straight back into the University of Adelaide. I spent the next couple of decades there.”

What followed was a master’s, then PhD in computer science and, ultimately, building up the University of Adelaide’s forerunner to AIML, the Australian Centre for Visual Technologies.

The chance to have an impact

What turned van den Hengel around was the chance to study computer vision.

“I saw the opportunity to engage with something that I realized was going to have incredible impact,” he says. Computer vision and its applications are everywhere today, but in the early 1990s, things were very different. “It's hard to believe now but at the time there were maybe 1000 people in the world working on computer vision, at a time when there weren't any digital cameras,” he reminisces. “Most papers in CV were at least half about how people had taken the images.”

[In the early 90s] there were maybe 1000 people in the world working on computer vision, at a time when there weren't any digital cameras. Most papers in CV were at least half about how people had taken the images.
Anton van den Hengel

Van den Hengel understood that humans are primarily visual animals and he clearly saw the inevitability of computers using vision to sense, and ultimately interact with, the world. “But back then, having a computer that could actually either measure or impact upon the real world was virtually unbelievable,” he says.

Since then, he says, computer vision has transformed from a heavily mathematical field with 300 people at every conference who all knew each other, to conferences of many thousands of people and auditoria full of companies trying to attract staff and sell things.

“The economic value of computer vision has gone through the roof,” he says.

Computer vision is a fundamental technology, van den Hengel says, because it relates the real world to symbols. “Humans reason about things in terms of symbols, so ‘cat’, ‘sky’, ‘car’, ‘road’, and ‘fish’ are all symbols, right? Computer vision takes visual signals from the real world and relates those signals to symbols,” he says.

That's been the critical missing piece of the puzzle. For decades it was predicted that by the year 2000 we would have robots doing the housework and many other ‘magical’ things, but we came up short because there's an infinite variation of things out there in the real world and it's much harder to get a computer to reason about our physical environment than anybody imagined.”

Looking for answers

This missing piece is tackled by a subfield of computer vision known as visual question answering (VQA). The idea is to enable computers not only to understand the content of an image (or video/livestream) in a more semantic, human-like way, but also to answer questions posed in natural language about that image. For example, “Where was this photo taken?”, “Does it look like the person on the picnic blanket is expecting someone?”, “What’s the color of the dog nearest the stop sign?”.

Van den Hengel is the world’s most-cited researcher in VQA by an enormous margin, with close to 22,000 citations.

Fireside chat: Anton van den Hengel and Simon Lucey

“I got into it very early because I saw it as a threshold change in the way that artificial intelligence works,” van den Hengel says. “What's interesting about VQA is that you ask the question at run-time and need the answer immediately, so it needs to be very flexible, unlike current machine learning applications, which are often fixed, single-purpose solutions to specific problems.”

In other words, it needs to be closer to true artificial intelligence – often referred to as artificial general intelligence.

In that vein, imagine a robot that could follow natural-language instructions, based on a greater understanding of what it sees around itself. It’s a sci-fi dream, but for how much longer?

In 2018, using a vision-and-language process similar to VQA, Van den Hengel and a team of colleagues from across Australia developed a simulator that uses imagery taken from the inside of real buildings to teach virtual agents to successfully navigate using visually grounded instructions, such as: “Head upstairs and walk past the piano through an archway directly in front. Turn right when the hallway ends at pictures and table. Wait by the moose antlers hanging on the wall.” It is only a matter of time before we can talk to our self-driving cars in a similar manner when necessary, says van den Hengel.

The power of neural networks

Rapid developments in machine learning are behind the recent supercharging of computer vision research.

“In the last 10 years of computer vision, we have essentially trained deep-learning neural networks to replace all of these lovely computer-vision algorithms that we'd previously come up with for solving a whole bunch of problems,” he says. “In fact, neural networks are so much better at it, they went from being just an interesting solution to a puzzle to being a practical solution to some of the core challenges we face.”

While at the University of Adelaide, van den Hengel has applied advances in ML and computer vision to make the world better in a variety of ways. These include working with Adelaide-based medical technology company LBT Innovations in creating an automated pathology machine called APAS (Automated Plate Assessment System) Independence, which can screen and interpret high volumes of pathology plates.

“There's a shortage of trained pathologists, partly because it's not a lot of fun sitting all day doing chemistry and looking at samples. APAS does the drudge work of the visual inspection process,” he says. The device was FDA approved in 2019.

Beyond computer vision, van den Hengel is currently the chief investigator for the Australian National Health and Medical Research Council’s Centre of Research Excellence in Healthy Housing, which is using ML to help deliver better outcomes within the Australian housing system, not only in terms of housing, but also in terms of health.

“People who are homeless suffer diseases and injuries, which put them into hospital, and homelessness can see people spiral into a set of difficult conditions that are very expensive for society to address,” he says. “It's actually cheaper to house somebody than to fix the impact of homelessness. So where can we intervene in the housing process in a way that benefits everybody and also saves money?”

Not all of van den Hengel’s work is quite so serious, however.

The paper I'm most happy about but that gets the least recognition is one that tells you how to build real Lego models of objects in images,” he says. “It’s got brilliant maths in it; some of my favorite maths. And it incorporates gravity, structural considerations and, you know, fantastic maths.” And did he mention the maths?

Van den Hengel has even used ML to design an IPA beer.

“Collecting the data was a real trauma: we had to drink, and rate, a lot of beer,” he laments. He named the resulting ale The Rodney, in homage to the Australian AI researcher and roboticist Rodney Brooks, whose work resulted in the Roomba vacuum cleaner.

Joining Amazon

Always an advocate for Australia on the world stage, van den Hengel was keen to play a leading role in Amazon’s research push into the country. “It was a fantastic opportunity to start a new group in Australia for a company like Amazon.”

Typically, when academics transition to Amazon, they talk about the increase in pace from academia to industry. Van den Hengel bucks that trend.

“I was running a group with 140 people, trying to make enough money to pay them, keep the doors open, deliver on projects for tens of millions of dollars, doing PR, you name it,” he says. “Here, I've got about 25 world-class people with PhDs who work for me and 12 interns.”

Van den Hengel noted that Amazon is a results-focused environment. “At Amazon you are expected to deliver, but you do it with an engineering team and support systems all geared towards delivering customer benefit.”

So what is van den Hengel delivering on? A current project is applying visual inspection methods to help to make sure that Amazon customers get the best fresh produce possible.

I think the whole retail field is moving towards a better understanding of the nature of objects in the world and how humans relate to those objects, or products. And that's something that computer vision is particularly well-placed to deliver.
Anton van den Hengel

“Visual inspection is a magnificent challenge and a core problem in computer vision,” he says,” and addressing it means we can make sure that when a customer receives a delivery of, say, tomatoes, they are as perfect as can be.”

Another key project involves using computer vision and ML to understand in a deeper way the hundreds of millions of items in the ever-changing Amazon catalogue. The catalogue has a trove of information, both in the word-based product descriptions and the images supplied by sellers.

“Making the most of the information contained in these two sources of information – which is essentially what humans do – is an interesting challenge, because it relies on the relationships between visual signals and symbols,” he explains, adding that cracking this challenge will help customers who are using Amazon search find the product that best matches their need “even if they're not entirely sure how best to specify it themselves.”

Despite the considerable demands of managing a growing team, van den Hengel is determined to remain hands-on with his own research. “Amazon's an innovative company, and really, truly innovating in a way that's going to provide something of value to customers that nobody else can means that you need managers who deeply understand where the technology can go,” he says.

So where is the technology going?

“I think the whole retail field is moving towards a better understanding of the nature of objects in the world and how humans relate to those objects, or products,” he says. “And that's something that computer vision is particularly well-placed to deliver.”

Browse through the open science positions in Amazon's Australia offices.

Research areas

Related content

US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. Identify and devise new video related solutions following a customer-obsessed scientific approach to address customer or business problems when the problem is ill-defined, needs to be framed, and new methodologies or paradigms need to be invented at the product level. Articulate potential scientific challenges of ongoing or future customers’ needs or business problems, and present interventions to address them. Independently assess alternative video related technologies, driving evaluation and adoption of those that fit best A day in the life As an Applied Scientist on the Sponsored Products Video team, you will work with a team of talented and experienced engineers, scientists, and designers to help bring new products to market and ensure that our customers are delighted by what we create. The Sponsored Products Video team is responsible for the design, development, and implementation of Sponsored Products Video experiences worldwide. About the team The Sponsored Products Video team within Sponsored Products and Brands creates relevant and engaging video experiences, connecting advertisers and shoppers. We are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping delightful, & personal.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
JP, 13, Tokyo
The JP Books - Manga team is looking for an Applied Scientist to participate in our AI related efforts to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be expected to research, design and build/train/tune models and provide recommendations in areas including but not limited to natural language processing (automatic translation, summarization, extraction) and image processing (boundary detection, image understanding, image generation). The ideal candidate will have strong knowledge in the areas of Computer Vision, Translations and or Image understanding/generation. This is the ideal role if you are excited about leveraging science for tangible business impact to the Manga books business. Amazon encourages publications, and you will work within an international team of engineers, all based in Tokyo, Japan while collaborating with partner scientists in Tokyo and Seattle. Key job responsibilities As an Applied Scientist, your responsibilities will be: - Spot opportunities for innovation using AI for the JP Manga business, and publish to internal or external conferences. - Work closely with other Books scientists and engineers to build, review and improve your model design proposals. - Partner with product managers and other business stakeholders, documenting and explaining your progress in business reviews, and being the technical voice in charge of your product. - Be active in the community, participating in science education/growth activities for Books and Amazon JP - Keep up to date with scientific development in related field About the team Our team develops and owns the experience for Manga books on Amazon in Japan. We build products powering the solutions offered to publishers, authors and customers in Japan and worldwide. We interact with Product Managers and business stakeholders to develop features that allow us to better serve our customers. We place strong emphasis on continuous learning through internal mechanisms for our team to keep on growing their expertise and keep up with the state of the art. Our mission is to establish Amazon Manga as the go-to destination for digital and print Manga.