Anton van den Hengel is seen smiling into the camera, with some office buildings in the background
Anton van den Hengel

Anton van den Hengel’s journey from intellectual property law to computer vision pioneer

Amazon’s director of applied science in Adelaide, Australia, believes the economic value of computer vision has “gone through the roof".

Anton van den Hengel, an international pioneer in computer vision and its many applications, departed the University of Adelaide in South Australia to join Amazon as director of applied science in April 2020. He is creating a new, world-class machine-learning hub in Adelaide and supporting Amazon’s business through the development and application of state-of-the-art computer vision and scalable machine learning.

Related content
Senior principal scientist Aleix M. Martinez on why computer vision research has only begun to scratch the surface.

In 2018, van den Hengel was the founding director of the Australian Institute for Machine Learning (AIML), Australia’s first institute dedicated to machine learning research. When he left to join Amazon, AIML was 140 people strong and near the top of the institutional world rankings in terms of computer vision research. He remains the part-time director of AIML’s new Centre for Augmented Reasoning, whose mission is to build core Artificial Intelligence (AI) capability in Australia.

Van den Hengel has authored more than 300 research papers, commercialized eight patents, and been chief investigator on research projects funded by many Fortune 500 companies.

But it could all have been so different. The young van den Hengel first got into computer science simply to support his efforts to become an intellectual property lawyer. In fact, he completed his law degree.

Amazon in Australia
Research teams in Adelaide are developing state-of-the-art, large-scale machine learning methods and applications involving terabytes of data. They work on applying ML, and particularly computer vision, to a wide spectrum of areas.

“I’d bought the suit, tie, and bright white shirt and was all ready to start my first day as an entry level lawyer,” he recalls. “Then, instead, I turned around and went straight back into the University of Adelaide. I spent the next couple of decades there.”

What followed was a master’s, then PhD in computer science and, ultimately, building up the University of Adelaide’s forerunner to AIML, the Australian Centre for Visual Technologies.

The chance to have an impact

What turned van den Hengel around was the chance to study computer vision.

“I saw the opportunity to engage with something that I realized was going to have incredible impact,” he says. Computer vision and its applications are everywhere today, but in the early 1990s, things were very different. “It's hard to believe now but at the time there were maybe 1000 people in the world working on computer vision, at a time when there weren't any digital cameras,” he reminisces. “Most papers in CV were at least half about how people had taken the images.”

[In the early 90s] there were maybe 1000 people in the world working on computer vision, at a time when there weren't any digital cameras. Most papers in CV were at least half about how people had taken the images.
Anton van den Hengel

Van den Hengel understood that humans are primarily visual animals and he clearly saw the inevitability of computers using vision to sense, and ultimately interact with, the world. “But back then, having a computer that could actually either measure or impact upon the real world was virtually unbelievable,” he says.

Since then, he says, computer vision has transformed from a heavily mathematical field with 300 people at every conference who all knew each other, to conferences of many thousands of people and auditoria full of companies trying to attract staff and sell things.

“The economic value of computer vision has gone through the roof,” he says.

Computer vision is a fundamental technology, van den Hengel says, because it relates the real world to symbols. “Humans reason about things in terms of symbols, so ‘cat’, ‘sky’, ‘car’, ‘road’, and ‘fish’ are all symbols, right? Computer vision takes visual signals from the real world and relates those signals to symbols,” he says.

That's been the critical missing piece of the puzzle. For decades it was predicted that by the year 2000 we would have robots doing the housework and many other ‘magical’ things, but we came up short because there's an infinite variation of things out there in the real world and it's much harder to get a computer to reason about our physical environment than anybody imagined.”

Looking for answers

This missing piece is tackled by a subfield of computer vision known as visual question answering (VQA). The idea is to enable computers not only to understand the content of an image (or video/livestream) in a more semantic, human-like way, but also to answer questions posed in natural language about that image. For example, “Where was this photo taken?”, “Does it look like the person on the picnic blanket is expecting someone?”, “What’s the color of the dog nearest the stop sign?”.

Van den Hengel is the world’s most-cited researcher in VQA by an enormous margin, with close to 22,000 citations.

Fireside chat: Anton van den Hengel and Simon Lucey

“I got into it very early because I saw it as a threshold change in the way that artificial intelligence works,” van den Hengel says. “What's interesting about VQA is that you ask the question at run-time and need the answer immediately, so it needs to be very flexible, unlike current machine learning applications, which are often fixed, single-purpose solutions to specific problems.”

In other words, it needs to be closer to true artificial intelligence – often referred to as artificial general intelligence.

In that vein, imagine a robot that could follow natural-language instructions, based on a greater understanding of what it sees around itself. It’s a sci-fi dream, but for how much longer?

In 2018, using a vision-and-language process similar to VQA, Van den Hengel and a team of colleagues from across Australia developed a simulator that uses imagery taken from the inside of real buildings to teach virtual agents to successfully navigate using visually grounded instructions, such as: “Head upstairs and walk past the piano through an archway directly in front. Turn right when the hallway ends at pictures and table. Wait by the moose antlers hanging on the wall.” It is only a matter of time before we can talk to our self-driving cars in a similar manner when necessary, says van den Hengel.

The power of neural networks

Rapid developments in machine learning are behind the recent supercharging of computer vision research.

“In the last 10 years of computer vision, we have essentially trained deep-learning neural networks to replace all of these lovely computer-vision algorithms that we'd previously come up with for solving a whole bunch of problems,” he says. “In fact, neural networks are so much better at it, they went from being just an interesting solution to a puzzle to being a practical solution to some of the core challenges we face.”

While at the University of Adelaide, van den Hengel has applied advances in ML and computer vision to make the world better in a variety of ways. These include working with Adelaide-based medical technology company LBT Innovations in creating an automated pathology machine called APAS (Automated Plate Assessment System) Independence, which can screen and interpret high volumes of pathology plates.

“There's a shortage of trained pathologists, partly because it's not a lot of fun sitting all day doing chemistry and looking at samples. APAS does the drudge work of the visual inspection process,” he says. The device was FDA approved in 2019.

Beyond computer vision, van den Hengel is currently the chief investigator for the Australian National Health and Medical Research Council’s Centre of Research Excellence in Healthy Housing, which is using ML to help deliver better outcomes within the Australian housing system, not only in terms of housing, but also in terms of health.

“People who are homeless suffer diseases and injuries, which put them into hospital, and homelessness can see people spiral into a set of difficult conditions that are very expensive for society to address,” he says. “It's actually cheaper to house somebody than to fix the impact of homelessness. So where can we intervene in the housing process in a way that benefits everybody and also saves money?”

Not all of van den Hengel’s work is quite so serious, however.

The paper I'm most happy about but that gets the least recognition is one that tells you how to build real Lego models of objects in images,” he says. “It’s got brilliant maths in it; some of my favorite maths. And it incorporates gravity, structural considerations and, you know, fantastic maths.” And did he mention the maths?

Van den Hengel has even used ML to design an IPA beer.

“Collecting the data was a real trauma: we had to drink, and rate, a lot of beer,” he laments. He named the resulting ale The Rodney, in homage to the Australian AI researcher and roboticist Rodney Brooks, whose work resulted in the Roomba vacuum cleaner.

Joining Amazon

Always an advocate for Australia on the world stage, van den Hengel was keen to play a leading role in Amazon’s research push into the country. “It was a fantastic opportunity to start a new group in Australia for a company like Amazon.”

Typically, when academics transition to Amazon, they talk about the increase in pace from academia to industry. Van den Hengel bucks that trend.

“I was running a group with 140 people, trying to make enough money to pay them, keep the doors open, deliver on projects for tens of millions of dollars, doing PR, you name it,” he says. “Here, I've got about 25 world-class people with PhDs who work for me and 12 interns.”

Van den Hengel noted that Amazon is a results-focused environment. “At Amazon you are expected to deliver, but you do it with an engineering team and support systems all geared towards delivering customer benefit.”

So what is van den Hengel delivering on? A current project is applying visual inspection methods to help to make sure that Amazon customers get the best fresh produce possible.

I think the whole retail field is moving towards a better understanding of the nature of objects in the world and how humans relate to those objects, or products. And that's something that computer vision is particularly well-placed to deliver.
Anton van den Hengel

“Visual inspection is a magnificent challenge and a core problem in computer vision,” he says,” and addressing it means we can make sure that when a customer receives a delivery of, say, tomatoes, they are as perfect as can be.”

Another key project involves using computer vision and ML to understand in a deeper way the hundreds of millions of items in the ever-changing Amazon catalogue. The catalogue has a trove of information, both in the word-based product descriptions and the images supplied by sellers.

“Making the most of the information contained in these two sources of information – which is essentially what humans do – is an interesting challenge, because it relies on the relationships between visual signals and symbols,” he explains, adding that cracking this challenge will help customers who are using Amazon search find the product that best matches their need “even if they're not entirely sure how best to specify it themselves.”

Despite the considerable demands of managing a growing team, van den Hengel is determined to remain hands-on with his own research. “Amazon's an innovative company, and really, truly innovating in a way that's going to provide something of value to customers that nobody else can means that you need managers who deeply understand where the technology can go,” he says.

So where is the technology going?

“I think the whole retail field is moving towards a better understanding of the nature of objects in the world and how humans relate to those objects, or products,” he says. “And that's something that computer vision is particularly well-placed to deliver.”

Browse through the open science positions in Amazon's Australia offices.

Research areas

Related content

US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
US, WA, Seattle
Amazon Prime Video is changing the way millions of customers enjoy digital content. Prime Video delivers premium content to customers through purchase and rental of movies and TV shows, unlimited on-demand streaming through Amazon Prime subscriptions, add-on channels like Showtime and HBO, and live concerts and sporting events like NFL Thursday Night Football. In total, Prime Video offers nearly 200,000 titles and is available across a wide variety of platforms, including PCs and Macs, Android and iOS mobile devices, Fire Tablets and Fire TV, Smart TVs, game consoles, Blu-ray players, set-top-boxes, and video-enabled Alexa devices. Amazon believes so strongly in the future of video that we've launched our own Amazon Studios to produce original movies and TV shows, many of which have already earned critical acclaim and top awards, including Oscars, Emmys and Golden Globes. The Global Consumer Engagement team within Amazon Prime Video builds product and technology solutions that drive customer activation and engagement across all our supported devices and global footprint. We obsess over finding effective, programmatic and scalable ways to reach customers via a broad portfolio of both in-app and out-of-app experiences. We would love to have you join us to build models that can classify and detect content available on Prime Video. We need you to analyze the video, audio and textual signal streams and improve state-of-art solutions while being scalable to Amazon size data. We need to solve problems across many cultures and languages, working alongside an operations team generating labels across many languages to help us achieve these goals. Our team consistently strives to innovate, and holds several novel patents and inventions in the motion picture and television industry. We are highly motivated to extend the state of the art. As a member of our team, you will apply your deep knowledge of Computer Vision and Machine Learning to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on addressing fundamental computer vision models like video understanding and video summarization in addition to building appropriate large scale datasets. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with independence and are often assigned to focus on areas with significant impact on audience satisfaction. You must be equally comfortable with digging in to customer requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than pleasing our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies and deep learning approaches to your solutions. We embrace the challenges of a fast paced market and evolving technologies, paving the way to universal availability of content. You will be encouraged to see the big picture, be innovative, and positively impact millions of customers. This is a young and evolving business where creativity and drive will have a lasting impact on the way video is enjoyed worldwide.
US, NY, New York
Amazon is looking for an outstanding Data Scientist to help build the next generation of selection systems. On the Specialized Selection team within the Supply Chain Optimization Technologies (SCOT) organization, we own the selection systems that determine which products Amazon offers in our fastest delivery programs. We build state-of-the-art models leveraging tools from machine learning, numerical optimization, natural language processing, and causal inference to automate the management of Amazon's sub-same day (SSD) selection at scale. We sit as a part of one of the largest and most sophisticated supply chains in the world. We operate a highly cross-functional team across software, science, analytics, and product to define and scalably execute the strategic direction of SSD and speed selection more broadly. As a Data Scientist on the team, you will work with scientists, engineers, product managers, and business stakeholders to conduct analyses that reveal key business insights and leverage data science and machine learning techniques to develop new models and solutions to emergent business problems. Key job responsibilities Understanding business problems and translate them to appropriate scientific solutions; Using data to provide new insights and clarity to ambiguous situations; Designing effective, scalable, and achievable solutions to key business problems; Developing the right set of metrics to evaluate efficacy of your models and solutions; Prototyping and analyzing new models and business logic; Communicating, both written and verbally, with both technical and business audiences throughout each project; Contributing to the scientific community across the organization
US, CA, Palo Alto
Join a team working on cutting-edge science to innovate search experiences for Amazon shoppers! Amazon Search helps customers shop with ease, confidence and delight WW. We aim to transform Search from an information retrieval engine to a shopping engine. In this role, you will build models to generate and recommend search queries that can help customers fulfill their shopping missions, reduce search efforts and let them explore and discover new products. You will also build models and applications that will increase customer awareness of related products and product attributes that might be best suited to fulfill the customer needs. Key job responsibilities On a day-to-day basis, you will: Design, develop, and evaluate highly innovative, scalable models and algorithms; Design and execute experiments to determine the impact of your models and algorithms; Work with product and software engineering teams to manage the integration of successful models and algorithms in complex, real-time production systems at very large scale; Share knowledge and research outcomes via internal and external conferences and journal publications; Project manage cross-functional Machine Learning initiatives. About the team The mission of Search Assistance is to improve search feature by reducing customers’ effort to search. We achieve this through three customer-facing features: Autocomplete, Spelling Correction and Related Searches. The core capability behind the three features is backend service Query Recommendation.
US, CA, Palo Alto
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning (ML) pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for energetic, entrepreneurial, and self-driven science leaders to join the team. Key job responsibilities As a Principal Applied Scientist in the team, you will: Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. Work with our engineering partners and draw upon your experience to meet latency and other system constraints. Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!"?
US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: * Hardware-informed efficient model architecture, training objective and curriculum design * Distributed training, accelerated optimization methods * Continual learning, multi-task/meta learning * Reasoning, interactive learning, reinforcement learning * Robustness, privacy, model watermarking * Model compression, distillation, pruning, sparsification, quantization About Us Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.