Theodore Vaslioudis, a former intern and full-time Amazon scientist
Theodore Vaslioudis, a former intern and full-time Amazon scientist since February 2020, uses his experiences to help customers gain the greatest value from AWS resources, and his colleagues make the most of working remotely.

From intern to applied scientist: How Theodore Vasiloudis made the transition

The applied scientist offers advice on how he utilized his internship to land a full-time job — and talks about how he and his colleagues won an award along the way.

In the early days of purchase data analysis, a study determined that people often bought diapers and beer together. When Theodore Vasiloudis, then a computer science undergrad, heard that from a professor at the Aristotle University of Thessaloniki, he was intrigued by the correlation: “I found it fascinating that, by aggregating the data of multiple users, you could extract weird and unexpected things like this.”

That course inspired Vasiloudis, today an applied scientist with Amazon Web Services (AWS), to direct his education toward machine learning. He left Greece in 2012 to study at the KTH Royal Institute of Technology in Stockholm, Sweden, which at the time had one of the few master’s programs in Europe dedicated to machine learning. After finishing his thesis on context-aware recommendations, he pursued an industrial PhD while employed at the Swedish Institute of Computer Science (industrial PhD students develop their research projects while working at a company to gain industrial experience).

In the final years of his PhD, Vasiloudis completed two summer internships at Amazon. One of those resulted in the publication of an award-winning research paper, Block-distributed Gradient Boosted Trees. In that paper, Vasiloudis and his colleagues Hyunsu Cho and Henrik Boström described the development of a new algorithm that was able to drastically reduce the communication cost to train massive, sparse datasets.

A full-time Amazon scientist since February 2020, Vasiloudis now uses his experiences to help customers make the best of AWS resources and his colleagues make the most of working remotely. He has even introduced to his team the custom of fika, the Swedish habit of pausing for a cup of coffee in the middle of the day. Each Friday, he and his teammates congregate over a remote coffee break at 3 p.m., which has helped sustain the team’s spirit during the pandemic. We asked Vasiloudis about his internship, what it was like to make the transition to full-time employee, and more.

Q. What made you interested in working at Amazon, and how was your experience as an intern?

With Amazon, you have the opportunity to reach hundreds of millions of people with your work. You can make changes that affect the everyday lives of such a large population. Also, because of the number of Amazon users, you are forced to design algorithms that can actually analyze massive amounts of data. So that's a very interesting challenge for me, to be able to create scalable algorithms that work regardless of the size of the data set.

For my first internship, I worked with Alexa Shopping and we looked into ways to generate realistic data sets to improve the customer’s experience. The second internship was with AWS, where my manager was Vineet Khare, then an applied science manager. There, I worked on how to get gradient-boosted trees to work with massive data sets that contain millions and billions of records, but also millions and billions of features. From that work, in close collaboration with my mentor Hyunsu Cho, we wrote the paper that won the best short paper award at SIGIR 2019.

These were both good experiences, because I got to work on interesting problems. And most importantly, I got to work with great colleagues. We had multiple interns within the team, and that meant that you could share the experience of being a science intern with other PhD students, and support each other through the internship. My full-time colleagues were also very helpful and fun to hang out with outside work as well. So I had a good time, and that's the main reason why I chose to return to Amazon for the full-time role.

One of the things that I definitely learned during my internships was the importance of writing high-quality code.  A common problem when you're writing research code is that you kind of go along without ensuring that everything works in a formal way. Whereas when writing code for a company, you need to prove and ensure that your code will always work regardless of the circumstances. And this is one of the Amazon leadership principles: That we have to insist on the highest standards.

Theodore Vasiloudis poses with the publication that won the best short paper award at SIGIR 2019.
Theodore Vasiloudis poses with the publication that won the best short paper award at SIGIR 2019.

Q. What set apart the paper that won at SIGIR 2019?

Gradient-boosted trees are designed to deal with very large data sets and are one of the most popular machine learning algorithms, widely used in both academia and industry. However, whenever we deal with very large data sets, often we have to use multiple computers.

Imagine you're trying to classify, for example, text. Let's say that this text is somebody’s loan application. If every possible word in this text is a feature, that means there can be millions of features because the vocabulary is practically limitless. So, when you try to share the model training among multiple computers — which can be a hundred, a thousand, or even more — you will very often run into problems because they are all competing for a tiny amount of bandwidth compared to the data set.

Previous systems were not efficient at communicating because they were wasting a lot of bandwidth with redundant information. Many real-world data sets are very sparse. In sparse data sets, most of the features are actually zeroes. Previous systems were still sending those over the network, and they were consuming a lot of unnecessary bandwidth. Whereas if you only send the non-zeroes over the network, then you're actually saving communication costs and bandwidth. That’s the main idea.

Q. How did you go about trying to find a solution for those sparse data sets?

We had two issues to solve: One regarding prediction and another regarding training. You can imagine a data set as a matrix. It has a bunch of rows, which are the records — for example, the loan application documents. And then each of those will have a number of features, which are the words in the document. So, you can have millions of documents, and millions of features as well. In previous systems, they would only partition the data set along the record dimension. They would take a few documents and put them in one computer, a few in another and then do the training and sync.

But if you want to really speed up the process, you can actually take part of a document and store it in one computer and another part in another computer. This is called block distribution. Instead of taking multiple rows from the same matrix, and storing them in the same computer, now we start taking a block — a few rows and a few columns — from that matrix and put it in one computer. That means that we have some additional communication to do to make predictions.

We used an existing algorithm for that called Quickscorer, which was designed for a completely different purpose, to speed up the prediction process locally. But that exact same approach can allow you to perform a very quick distributed prediction, and we modified that algorithm to adapt our use case. So that's how we solved that prediction issue. And then for the training, we did something similar, where we would only send for a given block the number of records that are necessary with a number of features, and then we would use an aggregation step in order to complete the training.

I think this work provides a good direction for future production systems. The communication pattern for very large data sets should be more flexible than the one that is currently used.

Q. What are you currently working on?

I'm working on SageMaker JumpStart. We create AWS solutions that allow customers to get started with SageMaker faster, and take their ideas to production more quickly and painlessly.  One part of my team’s responsibilities is to work directly with customers when they have a specific problem. But we also do a lot of innovating on the behalf of our customers.

Q. You started your full-time role right at the beginning of the pandemic. Did that affect your work in any way?

We stopped going to the office and started using a digital form of communication. In trying to keep the team spirit alive, one of the things that I try to have in our team is something that we used to have in Sweden, which is called the fika. It’s like a coffee break where you stop working for half an hour and chat with your colleagues about anything you want. It’s just some social time where everybody can relax and interact with colleagues.

If you have the opportunity to work at a company like Amazon, you should definitely take it, because you can gain a lot of experience that is impossible to gain during your PhD.
Theodore Vasiloudis

I saw that, with COVID-19, the interaction with colleagues goes down significantly, so it's good to have some time allocated in your calendar when you don’t have to work, just have some coffee and chat. An informal conversation is when a lot of important ideas come up, and it’s good to have that opportunity.

Q. What advice would you give to people considering following your footsteps?

If you have the opportunity to work at a company like Amazon, you should definitely take it, because you can gain a lot of experience that is impossible to gain during your PhD. The way that the industry works is very different from the way academia works. If you have done a couple of these internships, you're much more prepared to join the workforce.

For interns at Amazon hoping to migrate into a full-time job, I would say that the regular check-ins with your hiring manager are very important, because you need to be constantly aware whether you're on track for your full-time offer. Every second week you get to sit with your hiring manager, and you can check with them if you should be doing something more, if you're hitting your targets in terms of the progress of the work itself, and in terms of representing the leadership principles of Amazon in your work. And that gives you a better sense of accomplishment. You need to make sure that you set a few milestones in the meantime and make sure that you hit them as you progress through your internship.

Q. Any final tips on how to make the best out of your internship at Amazon?

How to become an intern at Amazon

If you’re a student with interest in an Amazon internship, you can find additional information here, and submit your details for review. Students can also learn more about internship opportunities at Amazon Student Programs.

Amazon values being independent and self-driven. And it's very good if you have a goal to publish a paper by the end of your internship and chase that publication. For example, we completed the writing of our paper after I had finished my internship, so if I hadn't pushed for that, I wouldn't have published this paper, and my co-authors and I wouldn't have gotten this award.

It's important to be motivated to work with your manager to make sure that you get all the necessary approvals before you finish your internship toward publishing the paper, because it's an important step for a career as a scientist, as well as for a PhD student, to publish high-quality papers. And it's a unique opportunity to do that when you have access to the infrastructure and data sets of Amazon.

Research areas

Related content

RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation