Christos Christodoulopoulos seated at a desk with a computer.
Christos Christodoulopoulos is a senior applied scientist with the Alexa Knowledge team based in Cambridge, UK. In this article, he provides career advice to computational linguistics' graduate students considering whether to pursue a research role in industry.

Can computational linguists find a home in the technology industry?

Alexa senior applied scientist provides career advice to graduate students considering a research role in industry.

Editor’s Note: Christos Christodoulopoulos is a senior applied scientist within the Alexa Knowledge team based in Cambridge, UK. His research focuses on knowledge extraction, knowledge graph question answering and fact verification. Christodoulopoulos joined Amazon in 2016 as a research scientist — his first non-academic position.

His background is in computational linguistics: the study of human language using computational methods. After earning his undergraduate degree in digital systems and technology education, Christodoulopoulos obtained his master’s degree in computational linguistics at the University of Edinburgh, with a thesis on computational models for linguistic phenomena like entailment and polarity.

Christos Christodoulopoulos, senior applied scientist, Alexa Knowledge team, at Cambridge in the UK.
Christos Christodoulopoulos

His doctoral research focused on the underlying structure of syntactic categories across languages and how (or if) they relate to semantic primitives. During his post-doctoral work at the University of Illinois at Urbana-Champaign, Christodoulopoulos worked on computational models of child language acquisition (based on the Syntactic Bootstrapping hypothesis) and machine-learning models for extending semantic role labeling (SRL). In the article below, Christodoulopoulos, who has transitioned from more theoretical research on language to more applied research on knowledge extraction, shares his advice on how young researchers can transition to an industry research position.

A friend who teaches at Cornell recently asked me to share career advice for graduate students who are deciding whether they want to work in industry. He teaches natural language processing and computational linguistics. Some of his students come from a traditional (non-computational) linguistics background and wanted to know whether there are career paths for them within the technology industry. Having not had any industry experience before joining Amazon, I tried to think of advice I wish someone had given me when I first started. Here’s what I shared:

Internships:

Former Amazon interns offer their advice

We asked some recent science interns (and PhD students) what advice they’d give to fellow future interns — here’s what they told us.

  • Pursue more than one internship, if possible. Try different companies or research groups. Find projects that lie just beyond your current research — close enough to hit the ground running and finish within three to six months, but challenging enough that you learn something new.
  • During your internship talk to as many people as possible: start with your interview (I decided to accept my current position after my conversation with two of my panel members), arrange 1:1s with other team members/leaders, attend talks, seminars, reading groups, and other activities that provide a more multi-disciplinary perspective.

Research:

  • Consciously expand your research to other areas, or use other tools than the ones you’re using in your day-to-day research.
  • For writing both academic and industry research papers, try to think about the implications of your work. What will the reader take away? Can they incorporate your findings into their work? ("Our system performs x% better than our competitors" is not a finding) Would your paper/work be relevant in six months, two years, or even five years? At Amazon, we use a working backwards model where we start from a customer need and work our way back to the solution — this gives us the confidence that the problem/end state is important, even if the solution changes.
  • Review research papers for as many conferences as you can. Try to gain a sense of the quality — and breadth —of work in your area. Read other reviewers' comments. See what they spotted and what they missed (or chose not to mention). Be respectful in your comments, but don't shy away from pointing out issues that stand out. Be constructive in your criticism and try to offer counter examples or suggestions for improvements. Try to highlight the positives of the work, focusing on what the community can learn from it. Always include an executive summary for the area chair (they will thank you).
  • Don't confuse tools with ways of thinking about a problem. If I ask you how you would solve sentiment analysis, BERT isn't an answer. Think of the underlying reason why such a technique would work, and try to generalize it. A company will not hire you because you're an expert in a tool/technique — you need to show you can learn a new one when the first one goes out of style (or better yet, develop the new one).
  • Be frugal with your resources. Do you need this amount of computation? This much data? How much effort would it take to transfer to other languages? What can the typological differences between languages tell us about the potential to generalize the model? This is academia's edge over industry.
  • Try to collaborate with other researchers as you pursue your PhD. Learn how to share the workload, but also resources like code and data. Use this opportunity to develop best practices for version control, code commenting, lab notes, and unit testing.

Career:

  • Before starting your PhD journey (or during the first year or so) decide if the academic model of research is for you. Getting a PhD is a long, arduous process (especially in the US) and can be very lonely even within a big research lab — the end state of your studies after all, is to be the sole expert in your (admittedly tiny) research area. If the extreme focus on a tiny sub-area isn't your thing, that’s OK — you can usually convert the first couple of years of your PhD into a master’s. Most research positions require a PhD, even though some companies will hire researchers with master’s degrees.
  • Pursuing a PhD is a long process, but it provides the opportunity to demonstrate what research can be. As my advisor used to say, a PhD is just a "driver's license for research". In retrospect, this was when I had the most time to work on ideas that excited me, and discover as much about my field as I could. Even if your thesis is on a very narrow topic make sure you get a chance to expand your research horizons by collaborating with other students on their projects, or simply during your literature review.
  • As my advisor used to say, a PhD is just a 'driver's license for research'.
    Christos Christodoulopoulos
    Idea-led vs. product-led research: there are a number of industry research groups that operate much more similarly to an academic research lab (where the main output is publications, data sets, and models), whereas others (including Amazon) focus on products/customers. This doesn't mean you won't get to publish — rather that you follow a product-driven, grounded approach instead of an idea-driven one — see our science website for examples. I have come to love working on product-led research for two reasons: first, you have a tangible impact on customers' lives (and you get to brag to your family and friends!); and second, it forces you to deal with the scale and “messiness” of real-world data. For me, this means dealing with language as it is, rather than as I would like it be.
  • Learn good administration practices. Look at how big companies organize their teams and programs (for example, Scrum and Kanban). Learn what makes a good meeting and adopt a meeting code of conduct (ask for an agenda, try to ensure everyone is heard, take notes and share).
  • Be a good teammate and eventually leader. Unfortunately, academics are never taught management skills (people or project), and not everyone is a natural team player or leader. Be aware of your unconscious biases, be self-critical, and earn trust. If you aren’t sure if you should take management courses (I haven't), try to observe how management is done around you, and learn from what works and what doesn't. I have found that Amazon’s list of leadership principles make for excellent day-to-day guidelines (even for non-managers like me).  

Non-computational disciplines:

  • The big technology companies — and a lot of start-ups — are interested in non-computational linguists. The difference is whether the positions offered are research/publications-oriented, or more engineering/analysis focused. At Amazon we have a number of roles like Language Engineer, Language Data Researcher, Data Linguist, Data Associate that consider linguists without computational background as candidates (data handling and scripting skills are required though — see below). You can also meet some of the Amazonians in these positions by visiting the Alexa AI team page, and clicking on Kat, Melanie, or Saumil.
  • Coding in Python is vital, even for non-computational linguists. It's steadily replacing R as the default data analysis language and it's very versatile in that it can be used from hacky scripts all the way to production systems (and of course it's the language of deep nets). Take programming courses and try to participate in Kaggle competitions or other shared challenges in your area. Our recent FEVER challenge is a good example of a standalone competition that requires a big chunk of the standard NLP pipeline

I hope you find this advice of use, and wish that your career journey is as challenging and rewarding as mine has been. As extra homework, I highly recommend reading Chris Manning’s excellent position paper “Computational Linguists and Deep Learning” from the column “Last Words” of the Computational Linguistics Journal. In his article in the same column, my PhD advisor Mark Steedman writes: “Human knowledge is expressed in language. So computational linguistics is very important.”

Related content

US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Key job responsibilities • Identifying creative solutions for challenging research problems in robotics and computer vision • Developing software solutions to test hypotheses and demonstrate new functionality • Prototyping concepts to collect data and measure performance • Writing code and unit tests and integrating code with other software and hardware components • Utilizing Amazon Robotics and Amazon engineering tools, processes and technologies • Delivering a final presentation to managers and engineers on the successes and challenges of their internship and the business value they have contributed
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.