A split screen screengrab from a video interview shows Siddhartha Srinivasa, left, director of Amazon Robotics AI, and Nia Jetter, Amazon Robotics AI senior principal technologist, right
Siddhartha Srinivasa, left, director of Amazon Robotics AI, joined Nia Jetter, right, Amazon Robotics AI senior principal technologist, to discuss the field of robotics, Amazon robotics initiatives, where they get their ideas from, and advice on starting a career in robotics.

Amazon Robotics AI leaders believe now is a 'particularly good time' to explore careers in robotics

Siddhartha Srinivasa, director of Amazon Robotics AI, and Nia Jetter, Amazon Robotics AI senior principal technologist, discuss inspiration, their roles at Amazon, and tips for pursuing a robotics career.

On October 6, Siddhartha (Sidd) Srinivasa joined Nia Jetter, Amazon Robotics AI senior principal technologist, to discuss the field of robotics, Amazon robotics initiatives, where they get their ideas from, and advice on starting a career in robotics.

Jetter, who earned a bachelor of science degree from MIT in math with computer science, and a master's degree in aeronautical and astronautical engineering from Stanford University, joined Amazon earlier this year. Previously, she spent 20 years in the aerospace Industry, including more than 18 years at Boeing where she rose to become a technical fellow in autonomy and AI.

Srinivasa joined Amazon as director of Robotics AI in 2018, and since 2017 has been the Boeing Endowed Professor at the School of Computer Science and Engineering at the University of Washington. Prior to that, he was the Finmeccanica Associate Professor at the Robotics Institute at Carnegie Mellon University where he founded the Personal Robotics Lab in December 2005. Srinivasa, who describes himself as “a full-stack roboticist, with a focus on robotic manipulation”, has worked in the robotics field since 1999.

Srinivasa, who is an IEEE Fellow, was also a first-wave founder of Berkshire Grey, a robotics company using machine vision and AI to solve material handling problems, and has led Intel’s research in robotics, the Quality of Life Technologies NSF ERC, the DARPA ARM-S, DARPA Robotics Challenge, and the HONDA Curious Minded Machine program. His algorithms have run on the NASA Robonaut and the Mars Rover and he is an editor for The International Journal of Robotics Research.

Q&A with Sidd Srinivasa, director of Amazon Robotics AI

The entirety of their conversation is above, including why Srinivasa considers himself an “accidental roboticist”, why the “democratization of robotics” is an essential hurdle to clear, and why now is a particularly good time to explore robotics. Below we have excerpted some answers from their wide-ranging conversation on career advice, sources of inspiration, and the field of robotics in general. Editor’s note: Some of these answers have been edited for length.

Advice for those considering robotics and AI careers

Srinivasa: “First, I think you should do it! Stop what you are doing and work on robots! Robotics is still at its infancy. This is both a blessing and a curse, more a blessing. Unlike other fields that require tens of years of work to perfect how to use an instrument, or perfect how to develop techniques, or even learn the language by which you can describe problems and solutions, the textbooks for robotics have yet to be written. There are a few. The barrier for entry into robotics is really low, particularly if you are in adjacent fields.

“Do something that puts you into a state where your work is relevant. If you are undergrad or grad student, I would recommend that you go find an internship in a place where robotics is actually the core business. Not robotics is something cool and fancy to have, but where robotics is actually material to the core business. Go through that experience. Live through that experience, be put through the fire of actually having to deliver something that matters. I think a lot of people who talk a lot about robotics often haven't the experienced the fire of production and delivery, and I think there is a lot of clarity that comes with that.”

Why increasing diversity in robotics and AI matters

Jetter: “I’m hugely passionate about lowering the barrier of entry for understanding topics like artificial intelligence and robotics. I genuinely believe that, through lowering the barrier of entry, that will allow us to increase inclusion and diversity of thought and truly be able to allow us to solve some of the most challenging problems technically, optimally, and most efficiently.”

The modern myth of robotics

Srinivasa: “One thing that we often get misled by is we look at YouTube videos of robots and we think, ‘It’s all solved, everything’s solved, this thing can do a backflip.’ The challenge is that it’s not the one time it does a backflip, it’s the 50 million times it doesn’t and it needs to do. That’s what I find fascinating. It is really about closing the loop and figuring out what to do when things go wrong that is the most critical aspect of robotics. When things go right, the YouTube video is easy to do, but taking something from 80 percent to 96 percent where you are systematically and methodically addressing all the things that go wrong, that's the most important learning for someone to get and I think that's where the real roboticists get their most joy, in taking something from 80 to 95 or 96 percent.”

On choosing to work in robotics at Amazon

Srinivasa: “I was finishing up with Berkshire Gray and I was just being a professor, just happy being a professor, and I did get a call from a bunch of places about joining and being part of their efforts. I asked them all one question: ‘Why robots? Why do you need robots? All I know how to do is build robots and that’s all I want to do, so why do you need robots?’ I found the answers from several of the others very tenuous, which was ‘We want to solve AI’ – whatever that means —'dot dot dot, robots!’ Amazon was to me one of the few places where there was just this very meaningful connection between robots and what the business value for the company was, and how we can really improve our associates’ experience."

Career advice from Amazon Robotics recruiters

"One thing I also really believe in is smart people will come with answers to questions, but it's really the questions that matter. And one of the nice things about being at Amazon is that I get to understand what the questions are and I get to frame the direct questions that I can then sort of unleash upon amazing brilliant people like you (Nia Jetter), to answer.”

Jetter: “The opportunity to help people, to obsess over our customers’ needs, to meet our customers’ needs, and solve some very real challenges that actually need to be solved in order to continue to meet our customers’ needs. Finding a way to truly help people here is something that is a huge attraction to me.”

On asking the right questions

Srinivasa: “There’s a lot that goes into building a product that is not science. A lot of startup founders or even technologists that I work with that say, ‘I’ve got this cool tool or this cool idea and we should do it.’ And it’s really about the what, why, when, where, and how. You could build a flying car and nobody might want it, history is strewn with examples of things that nobody wants, even though it was technically very hard to create.”

On being a science leader

Srinivasa: Put yourself in a situation where your failure has material consequences. Whether you are a professor or whether you are a product leader, otherwise you are just dabbling. I’ve always rejected dabbling because I’ve always wanted to be in situations where the work that I did had real consequences, whether it succeeded or if it failed. That somehow really sharpens me and gets me excited about doing it. While it’s nice to have some safety nets, I do also think we should take the leap of faith and do something whose success or failure has material consequences.”

On loving robotics

Srinivasa: "The journey of being able to do it all. I love writing code, I love building robots, I love welding metal, I love proving theorems, but the opportunity to do it all and to really align against metrics and do it in a way such that you are able to bring meaningful change has always been really exciting for me."

On where they get their ideas

Srinivasa: “I love two things, one is observing the world and the other one is trying to explain things. I love explaining things to my kids, I love teaching. I think the act of teaching and the act of explaining really forces you to ask the five whys. I am very curious, I love reading about various things. Robotics is one of those things where you watch the world behave and you try to ask, okay, why is it behaving like the way its behaving and how do I think about it clearly? In many ways it is a very descriptive science. In that, when I look at a robot picking up a coffee mug, and I prove a theorem and I write an algorithm and build a robot that picks up the coffee mug, in some ways I'm explaining using the language that is available to me how a coffee mug is picked up.

“One of the projects I work on as a professor at the University of Washington is on a robot that can help feed people with disabilities. The reason I started working on that problem was because I visited the Rehab Institute of Chicago, it’s now called the Ability Lab, and I just asked people ‘What can I do that can at least attempt to make your life better?’ The top request from them was they just want to be able to eat by themselves and not have to be fed by a caregiver. So I was like ‘OK, I’ll do that, that sounds meaningful and important and I’m sure it’s challenging.’ History has shown that we’ve invented many things that we think are useful, but are not. So talking to customers is really, really valuable.”

Jetter: “I think of myself as someone who doesn’t just think outside the box, but exists outside of the box. I try to be very observant and I try to listen a lot and I try to draw analogies between experiences. I try to leverage some of my experiences that might be unique from my perspective, particularly coming from aerospace and defense and now being in robotics, just leveraging my past experience and bringing that new diversity of thought, in many ways, to robotics. I’m super passionate about fundamentals and first principles and breaking things down.

“A lot of my ideas come from drawing analogies based on my experience, so seeing something new that I might not be expert in or have depth in and relating it to something that I do have depth in and looking at it through a different lens. That’s been effective for me in at least a couple of instances in my career.”

See the latest openings in AI, robotics, and other fields. Or, if you're a student interested in pursuing an internship, learn about upcoming opportunities on the Amazon Student Programs page.

Research areas

Related content

US, WA, Seattle
The People eXperience and Technology (PXT) Central Science Team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms, process improvements and products, which simultaneously improve Amazon and the lives, wellbeing, and the value of work of Amazonians. We are an interdisciplinary team which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We invest in innovation and rapid prototyping of scientific models, AI/ML technologies and software solutions to accelerate informed, accurate, and reliable decision backed by science and data. As a research scientist you will you will design and carry out surveys to address business questions; analyze survey and other forms of data with regression models; perform weighting and multiple imputation to reduce bias due to nonresponse. You will conduct methodological and statistical research to understand the quality of survey data. You will work with economists, engineers, and computer scientists to select samples, draft and test survey questions, calculate nonresponse adjusted weights, and estimate regression models on large scale data. You will evaluate, diagnose, understand, and surface drivers and moderators for key research streams, including (but are not limited to) attrition, engagement, productivity, inclusion, and Amazon culture. Key job responsibilities Help to design and execute a scalable global content development and validation strategy to drive more effective decisions and improve the employee experience across all of Amazon Conduct psychometric and econometric analyses to evaluate integrity and practical application of survey questions and data Identify and execute research streams to evaluate how to mitigate or remove sources of measurement error Partner closely and drive effective collaborations across multi-disciplinary research and product teams Manage full life cycle of large-scale research programs (Develop strategy, gather requirements, manage and execute)
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs. - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. About the team It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experiences of Amazon customers worldwide. Your work will directly impact our customers in the form of products and services that make use of language and multimodal technology!
US, WA, Seattle
Are you excited about developing foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for collaborative scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking an experienced and senior Applied Scientist to focus on computer vision machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.
US, WA, Seattle
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life We thrive on solving challenging problems to innovate for our customers. By pushing the boundaries of technology, we create unparalleled experiences that enable us to rapidly adapt in a dynamic environment. Our decisions are guided by data, and we collaborate with engineering, science, and product teams to foster an innovative learning environment. If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits Summary: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team Join our team of scientists and engineers who develop and deploy LLM-based Conversational AI systems to enhance Amazon's customer service experience and effectiveness. We work on innovative solutions that help customers solve their issues and get their questions answered efficiently, and associate-facing products that support our customer service associate workforce.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is critical to the algorithms that power the recommendation, search, and ranking systems. It's also critical to making decisions, especially working on systems that are themselves data-driven. As a Senior Data Scientist on the CDML team, you'll be responsible for helping drive improvements to the machine learning systems as well as analytics to drive decision-making. While there is a team of Applied Scientists building and shipping the algorithms themselves, data science can help improve these systems directly. In this role, you can identify and build new signals to input into the models. We're also working on the value model that the algorithm optimizes, and your input will be critical to understanding the tradeoffs and balancing multiple objectives in a scientific way. We also still have big unanswered analytics questions to solve. How often do viewers just want to get to the content they already know they want to watch, and when are they open to exploring new channels? These are the sorts of questions you'll be tackling. You Will - Inform product strategies by defining and updating core metrics for each initiative - Estimate the opportunity sizing of new features the team could take on - Identify and build new signals to incorporate into the algorithms driving recommendations, search, and feed ranking at Twitch - Identify metric tradeoff ratios that help inform value model choices, long-term impact from early-growth-funnel users, and other product decisions - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Design A/B experiments to drive product direction with iterative innovation and measurement - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Are you seeking an environment where you can drive innovation? WW Amazon Stores Finance Science (ASFS) works to leverage science and economics to drive improved financial results, foster data backed decisions, and embed science within Finance. ASFS is focused on developing products that empower controllership, improve financial planning by understanding financial drivers, and innovate science capabilities for efficiency and scale. Our team owns sophisticated science capabilities for forecasting the WW Amazon Stores P&L, focusing on costs and the bottomline (profitability). We are looking for an outstanding Senior economist to lead new high visibility initiatives for forecasting the WW Amazon Stores P&L (focusing on costs and the bottomline). The forecasting models will be used to enable better financial planning and decision making for senior leadership up to VP level. You will build new econometric models from the ground up. The role will develop new driver based forecasting models for Retail related P&L lines that incorporate business drivers. The Sr Economist will also help generate new insights on how macroeconomic factors impact the P&L. This role will have very high visibility with senior leadership up to VP level. We prize creative problem solvers with the ability to draw on an expansive methodological toolkit to transform financial planning and decision-making through economics. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable owning and extracting insights from data. You are excited to learn from and alongside seasoned scientists, engineers, economists, and business leaders. You are an excellent communicator and effectively translate technical findings into business action.
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key focus areas include: 1. Task-Oriented Dialog Systems: Building reliable, scalable, and adaptive LLM-based agents for understanding intents, determining eligibilities, making API calls, confirming outcomes, and exploring alternatives across hundreds of customer service intents, while adapting to changing policies. 2. Lifelong Learning: Researching continuous learning approaches for injecting new domain knowledge while retaining the model's foundational abilities and prevent catastrophic forgetting. 3. Agentic Systems: Developing a modular agentic framework to handle multi domain conversations through appropriate system abstractions. 4. Complex Multi-turn Instruction Following: Identifying approaches to guarantee compliance with instructions that specify standard operating procedures for handling multi-turn complex scenarios. 5. Inference-Time Adaptability: Researching inference-time scaling methods and improving in-context learning abilities of custom models to enable real-time adaptability to new features, actions, or bug fixes without solely relying on retraining. 6. Context Adherence: Exploring methods to ground responses in specific customer attributes, account information, and behavioral data to prevent hallucinations and ensure high-fidelity responses. 7. Policy Grounding: Investigating techniques to align bot behavior with evolving company policies by grounding on complex, unstructured policy documents, ensuring consistent and compliant actions. 1. End to End Dialog Policy Optimization: Researching alignment approaches to optimize successful dialog completions. 2. Scalable Evaluations: Developing automated approaches to evaluate quality of experience, and correctness of agentic resolutions Key job responsibilities 1. Research and development of LLM-based chatbots and conversational AI systems for customer service applications. 2. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. 3. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. 5. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. 6. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. 7. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field.